Volume-3 Issue-10

  • Version
  • Download 18
  • File Size 4.00 KB
  • File Count 1
  • Create Date September 6, 2017
  • Last Updated September 6, 2017

Volume-3 Issue-10

 Download Abstract Book

S. No

Volume-3 Issue-10, September 2015, ISSN: 2319–6386 (Online)
Published By: Blue Eyes Intelligence Engineering & Sciences Publication Pvt. Ltd. 

Page No.



K. Narsaiah, T. Srinivas

Paper Title:

A Unified Control Strategy for Three-Phase Inverter in Distributed Generation

Abstract: This project presents a unified control strategy that enables both islanded and grid-tied operations of three-phase inverter in distributed generation, with no need for switching between two corresponding controllers or critical islanding detection. The proposed control strategy composes of an inner inductor current loop, and a novel voltage loop in the synchronous reference frame. The inverter is regulated as a current source just by the inner inductor current loop in grid-tied operation, and the voltage controller is automatically activated to regulate the load voltage upon the occurrence of islanding. Furthermore, the waveforms of the grid current in the grid-tied mode and the load voltage in the islanding mode are distorted under nonlinear local load with the conventional strategy.  Finally, the effectiveness of the proposed control strategy is validated by the simulation and experimental results.

Distributed generation (DG), islanding mode, load current, seamless transfer, three-phase inverter, unified control strategy.


1.        R. C. Dugan and T. E. McDermott, “Distributed generation,” IEEE Ind. Appl. Mag., vol. 8, no. 2, pp. 19–25, Mar./Apr. 2002.
2.        R. H. Lasseter, “Microgrids and distributed generation,” J. Energy Eng., vol. 133, no. 3, pp. 144–149, Sep. 2007.

3.        C. Mozina, “Impact of green power distributed generation,” IEEE Ind. Appl. Mag., vol. 16, no. 4, pp. 55–62, Jul./Aug. 2010.

4.        IEEE Recommended Practice for Utility Interface of Photovoltaic(PV) Systems, IEEE Standard 929-2000, 2000.

5.        IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE Standard 1547-2003, 2003.

6.        J. Stevens, R. Bonn, J. Ginn, and S. Gonzalez, Development and Testing of an Approach to Anti-Islanding in Utility-Interconnected Photovoltaic Systems. Livermore, CA, USA: Sandia National Laboratories, 2000.

7.        M. Massoud, K. H. Ahmed, S. J. Finney, and B. W. Williams, “Harmonic distortion-based island detection technique for inverter-based distributed generation,” IET Renewable Power Gener., vol. 3, no. 4, pp. 493– 507, Dec. 2009.

8.        T. Thacker, R. Burgos, F. Wang, and D. Boroyevich, “Single-phase islanding detection based on phase-locked loop stability,” in Proc. 1st IEEE Energy Convers. Congr. Expo., San Jose, CA, USA, 2009, pp. 3371–3377.

9.        S.-K. Kim, J.-H. Jeon, J.-B. Ahn, B. Lee, and S.-H. Kwon, “Frequencyshift acceleration control for anti-islanding of a distributed-generation Inverter,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 494–504, Feb. 2010.

10.     Yafaoui, B. Wu, and S. Kouro, “Improved active frequency drift antiislanding detection method for grid connected photovoltaic systems,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2367–2375, May 2012.

11.     J. M. Guerrero, L. Hang, and J. Uceda, “Control of distributed uninterruptible power supply systems,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 2845–2859, Aug. 2008.

12.     M. C. Chandorkar, D. M. Divan, and R. Adapa, “Control of parallel connected inverters in standalone A Csupply systems,” IEEE Trans. Ind. Appl., vol. 29, no. 1, pp. 136–143, Jan./Feb. 1993.






Mokhtar Said El-Negamy, Abeer Galal, G. M. El-Bayoumi

Paper Title:

Extraction of The unknown Parameters of a Photovoltaic Module From Manufacture Data Sheet

Abstract: This paper represents an approach to identify the parameters of the equivalent circuit of a photovoltaic (PV) module and other parameters that are needed to determine the performance characteristics of the module. The proposed approach is based on the remarkable points given by the manufacture datasheet and considering the effect of irradiance and temperature change on the PV module characteristics. The implementation of this methodin MATLAB® script provides the model parameters which have to minimize as soon as possible the error involved between the calculated and measured output current. The proposed approach explains the relation which governs the exchange in the series resistance, shunt resistance, the light photo current, and the maximum power of the PV module due to the variation of the cell temperature. The used model is implemented as a MATLAB® script which yields the I-V and P-V characteristics of the PV panel under variations of cell temperature and solar irradiance.The formulated model results were validated with rated power output of a photovoltaicmodule provided by manufacturers using local meteorological data, which gave ±0.1688% error for MSP290AS module and ±0.156 % error for MSMD290AS module at standard test condition. It is found that the proposed model is more practical in terms of precise estimations of photovoltaic module power output for any required location and number of variables used.

Photovoltaic model, Parameters Estimation,manufacture data.


1.        IEE-Europe programme, Renewable Eletricity Make the Switch – Project report, Executive Agency for Competitiveness and Innovation of the European Commission, n°4, September 2004.
2.        Sze, S. M. Physics of Semiconductor Devices; Wiley-Interscience: New York, 1969.
3.        Pfann, W. G.; Roosbroeck, W. van Radioactive and Photoelectric p-n Junction Power Sources. Journal of Applied Physics 1954, 25.
4.        Prince, M. B. Silicon solar energy converters. Journal of Applied Physics 1955, 26, 534–540.
5.        Wolf, M.; Rauschenbach, H. Series resistance effects on solar cell measurements. Advanced Energy Conversion 1963, 3, 455–479.
6.        Van Dyk, E. E.; Meyer, E. L. Analysis of the effect of parasitic resistances on the  performance of photovoltaic modules. Renewable Energy 2004, 29, 333–344.
7.        elas, M. . orres, . . rieto, E. arc a , a electing a suitable model for characteriingphotovoltaic devices. Renewable Energy 2002, 25, 371–380.
8.        Carrero, C.; Rodríguez, J.; Ramírez, D.; Platero, C. Simple estimation of PV modules loss resistances for low error modelling. Renewable Energy 2010, 35, 1103 1108.
9.        Zhu, X.-G.; Fu, Z.-H.; Long, X.-M. Sensitivity analysis and more accurate solution of photovoltaic solar cell parameters.Solar Energy 2011, 85, 393–403.
10.     Bätzner, D. L.; Romeo, A.; Zogg, H.; Tiwari, A. N. CdTe / CdS SOLAR CELL PERFORMANCE UNDER LOW IRRADIANCE. October 2001, 1–4.
11.     Kennerud, K. L. Analysis of Performance Degradation in CdS Solar Cells. IEEE Transactions OnAerospace
12.     Charles, J. P. A practical method of analysis of the current-voltage characteristics of solar cells.Solar Cells 1981, 4, 169–178.
13.     De Soto, W.; Klein, S. a.; Beckman, W. a. Improvement and validation of a model for photovoltaic array performance. Solar Energy 2006, 80, 78–88.
14.     Carrero, C.; Amador, J.; Arnaltes, S. A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances.Renewable Energy 2007, 32, 2579–2589.
15.     Cubas, J.; Pindado, S.; Victoria, M. On the analytical approach for modeling photovoltaic systems behavior.Journal of Power Sources 2014, 247, 467–474.
16.     Lineykin, S. Five-Parameter Model of Photovoltaic Cell Based on STC Data and Dimensionless. In 2012 IEEE 27th Convention of Electronical and Electronics Engineers in Israel; 2012; pp. 1–5.
17.     Peng, L.; Sun, Y.; Meng, Z.; Wang, Y.; Xu, Y. A new method for determining the characteristics of solar cells.Journal of Power Sources 2013, 227, 131–136.
18.     Peng, L.; Sun, Y.; Meng, Z. An improved model and parameters extraction for photovoltaic cells using only three state points at standard test condition. Journal of Power Sources 2014, 248, 621–631.
19.     Orioli, A.; Di Gangi, A. A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data.Applied Energy 2013, 102, 1160– 1177.
20.     Ma, J.; Man, K. L.; Ting, T. O.; Zhang, N.; Guan, S.-U.; Wong, P. W. H. Approximate single diode photovoltaic model for efficient I-V characteristics estimation. TheScientificWorldJournal 2013, 2013, 230471.
21.     Ma, J.; Ting, T. O.; Man, K. L.; Zhang, N.; Guan, S.-U.; Wong, P. W. H. Parameter Estimation of Photovoltaic Models via Cuckoo Search. Journal of Applied Mathematics 2013, 2013, 1–8.
22.     Li, Y.; Huang, W.; Huang, H.; Hewitt, C.; Chen, Y.; Fang, G.; Carroll, D. L. Evaluation of methods to extract parameters from current–voltage characteristics of solar cells. Solar Energy 2013, 90, 51–57.
23.     Dongue, S. B.; Njomo, D.; Tamba, J. G.; Ebengai, L. Modeling Of Electrical Response of Illuminated Crystalline Photovoltaic Modules Using Four- And Five-Parameter Models. InternationalJournal of Emerging Technology and Advanced Engineering 2012, 2, 612–619.
24.     Ishibashi, K.; Kimura, Y.; Niwano, M. An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic.Journal of Applied Physics 2008, 103, 094507.
25.     Lineykin, S.; Averbukh, M.; Kuperman, A. An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel.Renewable and Sustainable Energy Reviews2014, 30, 282–289.
26.     Ibrahim Abdel-Moneim Abdel-Halim, “An Approach for Determination of the Parameters of a Photovoltaic Module,” Engineering Research Journal (ERJ) Shoubra Faculty of Engineering, vol. 2, pp. 30–36, October 2004
27.     Marcelo GradellaVillalva, Jonas Rafael Gazoli, and Ernesto RuppertFilho “Comprehensive Approach to Modeling and Simulation of Photovoltaic Array,” IEEE Transaction on Power Electronics, vol. 24, No. 5, pp. 1198–1208, May 2009.
28.     Marcelo GradellaVillalva, Jonas Rafael Gazoli, and Ernesto RuppertFilho “Modeling And Circuit-Based Simulation of Photovoltaic Arrays,” Brazilian Journal of Power Electronics, vol. 14, No. 1, pp. 35–45, 2009.
29.     AbirChatterjee, Ali Keyhani, and DhruvKapoor “Identification of Photovoltaic Source Models,” IEEE Transaction on Energy Conversion, vol. 26, No. 3, pp. 883–889, September 2011.
30.     GhiasFarivar, and BehzadAsaei “Photovoltaic Module Single Diode Model Parameters Extraction Based on Manufacturer Datasheet Parameters,” IEEE International Conference on Power and Energy,(PECon), Nov. 29- Dec 1, pp. 929–934, Kuala Lumpur, 2010.
31.     MarkosKatsanevakis “Modelling the Photovoltaic Module,” IEEE International Symposium on Industrial Electronics (ISIE), PP. 1414- 1419, IEEE Press, 2011.
32.     MünchenSolarenergie GmbH Multicrystalline MSPxxxAS-36.EU www.munchensolar.de(accessed Feb 5, 2014).
33.     MünchenSolarenergie GmbH Monocrystalline MSMDxxxAS-36.EU www.munchensolar.de(accessed Feb 5, 2014).
34.     A. Q. Jakhrani, A. K. Othman, A. R. H. Rigit, R. Baini, S. R. Samo, and L. P. Ling, “Investigation of solar photovoltaic module power output by various models,” NED UniversityJournal of Research, pp. 25–34, 2012.
35.     A. Q. Jakhrani, A. K. Othman, A. R. H. Rigit, and S. R. Samo, “Comparison of solar photovoltaic module temperature models,”World Applied Sciences Journal, vol. 14, pp. 1–8, 2011.
36.     A. Q. Jakhrani, A. K. Othman, A. R. H. Rigit, and S. R. Samo, “Determination and comparison of different photovoltaicmoduletemperaturemodelsforKuching, Sarawak,” in Proceedings ofthe IEEE 1st Conference on Clean Energy and Technology (CET’11), pp. 231–236, Kuala Lumpur, Malaysia, June 2011.
37.     A. Q. Jakhrani, S. R. Samo, A. R. H. Rigit, and S. A. Kamboh, “Selection of models for calculation of incident solar radiation on tilted surfaces,”World Applied Sciences Journal, vol. 22, no. 9, pp. 1334–1341, 2013.
38.     A. Q. Jakhrani, A. K. Othman, A. R. H. Rigit, S. R. Samo, and S. A. Kamboh, “Sensitivity analysis of a standalone photovoltaic system model parameters,” Journal of Applied Sciences, vol. 13, no. 2, pp. 220–231, 2013.
39.     J.Cubas, S.Pindado and Carlos de ManuelA, “Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function,''), Energies 2014, 7, 4098-4115






Monika Kohli, Harmeet Kaur

Paper Title:

Exploring Mobile Application Development Tools

Abstract: With the advent of Smartphone, constant up gradations in developing smartphone’s through apps are growing at a rapid speed. Wide variety of platform, operating system and tools market is growing. In this paper, we have discussed different tools which are available for native and cross-platform mobile application development. Long-term and viable solution will prevail the market and comparing different tools and techniques in app development help the developer to choose as per the requirement. Cross-platform apps development is also escalating but Native app development is a better contender so far.  But Developers are migrating to cross platform application development tools in order to reduce the cost of development and reach out to maximum users across several platforms.

Keywords: Smartphone’s, developing, different, Crossplatform, Developers, tools, platforms


1.        HTML5, 2012. http://www.w3.org/TR/html5/.
2.        Apache Cordova, 2012. http://incubator.apache.org/cordova/.

3.        Appcelerator, 2012. http://www.appcelerator.com/.

4.        Dalmasso, Isabelle, Soumya Kanti Datta, Christian Bonnet, and Navid Nikaein. "Survey, comparison and evaluation of cross platform mobile application development tools." In Wireless Communications and Mobile Computing Conference (IWCMC), 2013 9th International, pp. 323-328. IEEE, 2013.

5.        Kanwalvir Singh, Himanshu Aggarwal, Design of e-Land Record Information System with Google Map Using Mobile Commerce, Journal of Software Engineering and Applications, 2013, pp. 221-228

6.        Bhargava, Bharat, Pelin Angin, and Lian Duan. "A Mobile-Cloud Pedestrian Crossing Guide for the Blind." In International Conference on Advances in Computing & Communication. 2011.

7.        Grønli, Tor-Morten, Jarle Hansen, and Gheorghita Ghinea. "Android vs Windows Mobile vs Java ME." In Pros 3 Intl Conf on Pervasive Technologies Related to Assistive rd Environments. 2010.

8.        Wasserman, Anthony I. "Software engineering issues for mobile application development." In Proceedings of the FSE/SDP workshop on Future of software engineering research, pp. 397-400. ACM, 2010.

9.        Kane, Shaun K., Jacob O. Wobbrock, and Richard E. Ladner. "Usable gestures for blind people: understanding preference and performance." In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 413-422. ACM, 2011.

10.     Pan, Biao, Kun Xiao, and Lei Luo. "Component-based mobile web application of cross-platform." In Computer and Information Technology (CIT), 2010 IEEE 10th International Conference on, pp. 2072-2077. IEEE, 2010.

11.     Smutny, P. "Mobile development tools and cross-platform solutions." InCarpathian Control Conference (ICCC), 2012 13th International, pp. 653-656. IEEE, 2012.

12.     Goadrich, Mark H., and Michael P. Rogers. "Smart smartphone development: iOS versus Android." In Proceedings of the 42nd ACM technical symposium on Computer science education, pp. 607-612. ACM, 2011.

13.     Liu, Chang, Qing Zhu, Kenneth A. Holroyd, and Elizabeth K. Seng. "Status and trends of mobile-health applications for iOS devices: A developer's perspective." Journal of Systems and Software 84, no. 11 (2011): 2022-2033.

14.     Xanthopoulos, Spyros, and Stelios Xinogalos. "A comparative analysis of cross-platform development approaches for mobile applications." InProceedings of the 6th Balkan Conference in Informatics, pp. 213-220. ACM, 2013.

15.     Heitkötter, Henning, Sebastian Hanschke, and Tim A. Majchrzak. "Evaluating cross-platform development approaches for mobile applications." In Web information systems and technologies, pp. 120-138. Springer Berlin Heidelberg, 2013.






Waheed Iqbal

Paper Title:

On The Metric Dimension of Pendent and Prism Graphs of Dodecahedral Other Embedding

Abstract: The findings in the present research paper on the metric dimension of the Dodecahedral Other Embedding (denoted here by G) for pendent and prism graphs are bounded. Further it is concluded that only three vertices chosen appropriately suffice to resolve all the vertices of these graphs for n = 0 (mod 4), n ≥ 16, n = 2 (mod 4), n ≥ 18 and n = 3 (mod 4), n  ≥ 11 for pendent and prism graphs respectively and only four vertices chosen appropriately suffice to resolve all the vertices of these graphs for n = 1 (mod 4), n ≥ 17.

Metric Dimension, Basis, Resolving Set, Dodecahedral Other Embedding.


1.        M., Ali, G., Ali, U. and Rahim, M. T. (2012). On cycle related graph withconstant metric dimension.,Journal of discrete mathematics, 2 : 21 - 25.
2.        Ali, M., Imran. M., Baig, A. Q. and Ali, G. (2012). On metric dimension ofMobius Ladders.  ArsCombinatoria, in press.

3.        Baig, A. Q., Bokhary, S. A. and Imran, M. (2010). Families of convex polytopes with constant metric dimension.Computers and Mathematics with Applications, (60) : 2629 - 2638.

4.        Baca, M., Baskoro, E. T., Salman, A. N. M., Saputro, S. W. and Suprijanto,D.  (2011). The metric dimension of regular partite graph. Bull. Math. Soc. Sci.Math. Roumanie Tome, 54(102): 15 - 28.

5.        Bannai, K. (1978). Hamiltonian cycles in generalized Peterson graphs. Journal of Combinatorial theory, 24(2): 181 - 188.

6.        Bahzad, A., Bahzad, M. and Praeger, C. E. (2008). On domination number of Generalized Petersen graphs. Journal of Discrete Mathematics, 308 : 603 - 610.

7.        Bailey, R. F. and Cameron, P. J. (2000). Base size, metric dimension and other invariants of groups and graphs.Bull Lond Math Soc., 43 : 209 - 242.

8.        Buczkowski, P. S., Chartrand, G., Poisson, C. and Zhang P. (2003). On K-dimensional graphs and their bases. Periodica Math, 46(1) : 9 - 15.

9.        Caceres, J., Hernando, C., Mora, M., Pelayo, I. M., Puertas, M. L., Seara, C.and Wood, D. R. (2007). On the metric dimension of Cartesian product of graphs.SIAM. J. Disc. Math, 2(21) : 423 - 441.

10.     Caceres, J., Hernando, C., Mora M., Pelayo, I. M., Puertas, M. L. and Seara,C. (2010). On the metric dimension of infinite graphs.

11.     Caceres, J., Hernando, C., Mora, M., Pelayo, I. M., Puertas, M. L., Seara,C. and Wood, D. R. (2005). On the metric dimension of some families of graphs.Electronic Notes in Disc. Math,22 : 129 - 133.

12.     Chartrand, G., Eroh, L., Johnson, M. A. and Oellermann, O. R. (2000). Resolvability in graphs and the metric dimension of a graph.Discrete Appl. Math,105(1) : 34 - 38.

13.     Eroh, L., Kang, C. X., and Yi, E. (2011). On Metric Dimension of Function graphs.available at arXiv: 1111:5864vl [math CO].

14.     Imran, M., Baig, A. Q., Shafiq, M. K. and Ioan. T. (2011). On the metricdimension of a Generalized Peterson graphs P(n; 3); 44 : 22 - 28.

15.     Imran, M., Baig, A. Q., Bokhary, A. H. S. and Javaid, I. (2010). On the metricdimension of Circulant graphs.Appl. Math,25 : 320 - 325.

16.     Iswadi, H., Baskro, E. T., Simanjuntak, R. and Salman, A. N. M. (2008). The Metric Dimension of graph with pendent edges. J. Combin. Math CombinComput, 65 : 139 - 145.

17.     Javaid, I., Rahim, T. M. and Ali. K. (2008). Families of Regular graph withconstant metric dimension. Utilitas Math, 75 : 21 - 33.

18.     Kousar, I. (2010). A subfamily of Generalized Peterson graphs P(n, 3) withconstant metric dimension. Utilitasmathematica,81 : 111 - 120.

19.     Kousar, I., Tomescu, I. and Husnine, S. M. (2010). Graphs with same diameterand metric dimension.Journal of prime research in Mathemetics,6 : 22 - 31.

20.     Melter, R. A. and Harary, F. (1976). On the metric dimension of a graph, ArsCombinatoria,2 : 191 - 195.

21.     Poisson, C. and Zhang, P. (2002). The Metric dimension of unicyclic graphs.J.Comb. Math Comb. Comput., 40 : 17 - 32.

22.     Oellermann, O. R. and Peters-fransen, J. (2006). Metric dimension of Cartesian products of graphs.Utilitas Math, 69 : 33 - 41.

23.     Melter, R. A and Tomescue, I. (1984).Metric basis in digital geometry.Computer vision graphics and image processing, 25 : 113 - 121.

24.     Slater. P. J. (1975). Leaves of trees.Congress.Numer., 14 : 549 - 559.

25.     Yashmanov, S. V. (1987). Estimates for the metric dimension of graph in termsof diameter and the number of vertices, Vestnikmoskov, univ, Ser. I. Math mekh103 : 68 - 70.

26.     Shanmukha, B., Sooryanarayana, B. and Harinath, K. S. (2001). Metric dimension of wheels. Far East J. Appl. Math, 8(3) : 217 - 229.

27.     Saenpholphat. V. (2003).Resolvability in Graphs.Ph. D. Dissertation, Western Michigan University.

28.     Shirinivas, S. G., Vetrivel, S. and Elango, N. M. (2010). Applications of graphtheory in computer science an overview. International Journal of Engineering Science and Technology, 2(9) : 4610 - 4621.