Volume-4 Issue-8

  • Version
  • Download 16
  • File Size 4.00 KB
  • File Count 1
  • Create Date September 6, 2017
  • Last Updated September 6, 2017

Volume-4 Issue-8

 Download Abstract Book

S. No

Volume-4 Issue-8, December 2016, ISSN: 2319–6386 (Online)
Published By: Blue Eyes Intelligence Engineering & Sciences Publication Pvt. Ltd. 

Page No.




Paper Title:

Types and Applications of Sensors

 Abstract: Sensors are the most important part of the robotics and the embedded system. we use the sensors to minimize the logic circuits and make the system more efficient. Beside advantages; recent advances, and cost reductions has stimulated interest in fiber optical sensing. Researchers has combined the product outgrowths of fiber optic telecommunications with optoelectronic devices to emerge fiber optic sensors. researches have been conducted in past decades using fiber optic sensors with different techniques. Intensity, phase, and wavelength based fiber optic sensors are the most widely used sensor types. In this paper, an overview of sensors and their applications are presented.

 sensors types , Fiber optics, optical fiber sensing, fiber Bragg gratings (FBGs), interferometry, micro bending, smart structures , IR sensors, temperature sensors, Touch sensors, Proximity sensors, UV sensors and advanced sensor technology.


1.       Geib, D., Multiplexing of Extrinsic Fabry-Perot Optical Fiber Sensors for Strain Measurements, M.S. Thesis, Virginia Polytechnic Institute and State University, 2003.
2.       I.F. Akyildiz, W. Su, A power aware enhanced routing (PAER) protocol for sensor networks, Georgia Tech Technical Report, January 2002, submitted for publication.

3.       Bakre, B.R. Badrinath, I-TCP: indirect TCP for mobile hosts, Proceedings of the 15th International Conference on Distributed Computing Systems, Vancouver, BC, May 1995, pp. 136–143

4.       P. Bauer, M. Sichitiu, R. Istepanian, K. Premaratne, The mobile patient: wireless distributed sensor networks for patient monitoring and care, Proceedings 2000 IEEE EMBS International Conference on Information Technology Applications in Biomedicine, 2000, pp. 17–21

5.       Culshaw, B., and Dakin, J., Optical Fiber Sensors: Systems and Applications, Artech House, Boston, 1989.

6.       Bhardwaj, T. Garnett, A.P. Chandrakasan, Upper bounds on the lifetime of sensor networks, IEEE International Conference on Communications ICC'01, Helsinki, Finland, June 2001

7.       Udd, E., W. Schulz, J. Seim, J. Corones, and H. M. Laylor, Fiber Optic Sensors for Infrastructure Applications , Oregon Department of Transportation, Washington D.C, 1998. Temperature Measurements, M.S. Thesis, Virginia Tech, 2003.

8.       P. Bonnet, J. Gehrke, P. Seshadri Querying the physical  world  IEEE  Personal  Communications (October 2000), pp. 10–15

9.       N. Bulusu, D. Estrin, L. Girod, J. HeidemannScalable coordination for wireless sensor networks: self- configuring localization systems, International Symposium on Communication Theory and Applications (ISCTA 2001), Ambleside, UK, July 2001

10.    B.G. Celler et al., An instrumentation system for .the remote monitoring of changes in functional health status of the elderly, 909

11.    Cerpa, D.  Estrin, and ASCENT:  adaptive  selfconfiguring sensor  networks topologies,  UCLA Computer Science Department. 6 A. Cerpa, J. Elson, M. Hamilton, J. Zhao, Habitat monitoring: application driver for wireless communications technology, ACM SIGCOMM'2000, Costa Rica, April 2001

12.    Chandrakasan, R. Amirtharajah, S. Cho, J.Goodman, G. Konduri, J. Kulik, W. Rabiner, A. Wang, Design considerations for distributed micro-sensor systems, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference, San Diego, CA, May 1999, pp. 279–286

13.    Chien, I. Elgorriaga, C. McConaghy, Low-power direct-sequence spread-spectrum modem architecture for distributed wireless sensor networks, ISLPED'01, Huntington Beach, California, and August 2001

14.    “Piezoresistive stress sensors for structural analysis of electronic packages,” J. Electron. Package. vol. 113, no. 3, pp. 203–215, 1991.

15.    Jones, D., Introduction to Fiber Optics, Naval Education and Training Professional Develeopment and Technology Center, 1998.

16.    Giallorenzi, T. G., et. al., Optical Fiber Sensor Technology, IEEE J. Quant. Elec., QE-18, 626, 1982.

17.    Krohn, D. A., Fiber Optic Sensors: Fundamental and Applications, Instrument Society of America, Research Triangle Park, North Carolina, 1988.

18.    Udd, E., Fiber Optic Sensors: An Introduction for Engineers and Scientists, Wiley, New York, 1991.

19.    Udd, E., editor, Fiber Optic Sensors, Proceedings of SPIE, CR-44, 1992.

20.    Udd, E., Fiber Optic Smart Structures, Proceedings of IEEE, vol. 84, no. 6, 884894, 1996.

21.    Tracey, P. M., Intrinsic Fiber-Optic Sensors, IEEE Transactions on Industry Applications, 27, 1, 1991.






Ravi Lodhi, Shiv Kumar, Babita Pathik

Paper Title:

An Attack Proof Trust Model for Secure Path Selection with Data Transmission in MANET: A Survey

 Abstract: A Mobile Ad-hoc Network (MANET) is a network of mobile nodes which also act as routers and are connected by wireless links. These routers are free to move and organize themselves at random; thus, the network's wireless topology may change rapidly and unpredictably. The dynamic nature of MANETs makes network open to attacks and unreliability. MANETs are vulnerable to various security attacks. Hence, finding a secure and trustworthy end-to-end path in MANETs is a legitimate challenge. Dynamic source routing set of rules is a functional protocol in wireless mobile ad-hoc network (MANET). Data Safekeeping and detection of malicious node in a MANET is an imperative job in any network. To achieve reliability and availability, routing protocols should be powerful against malicious attacks. This paper provides survey to the attacks while data transmission and finding secure route in MANET.

MANET, secure routing, malicious attack, Ad hoc Network, Wireless Routing Protocol, trust value.


1.       Tanvi Arora, Amarpreet Kour, Mandeep Singh,” Review of various routing protocols and routing Models for MANRTs”, International Journal of Innovation & Advancement in CS ,IJIACS,ISSN 2347- 8616,Vol.4 Special Issue, MAY 2015.
2.       Amit N Thakre ,Mrs M.Y.Joshi “Performance Analysis of AODV & DSR routing Protocol in Mobile ad-hoc network”, IJCA special Issue on “mobile ad-hoc network”, MANETs 2010

3.       David A. Maltz, “On demand routing in multi-hop wireless mobile ad-hoc network” CMU-CS-01-130, PhD. Desertion,  School of computer science Carnegie Mellon University, Pittsburgh PA- 2001.

4.       Antesar M. Shabut, Keshav P. Dahal, Sanat Kumar Bista, and Irfan U. Awan, Recommendation Based Trust Model with an Effective Defence Scheme for MANETs, IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 10, OCTOBER 2015, pp-2101-2115

5.       H. Deng, W. Li, and D. Agrawal, “Routing security in wireless ad hoc networks,” IEEE Commun. Mag., vol. 40, no. 10, pp. 70–75, Oct. 2002.

6.       B. Wu, J. Chen, J. Wu, and M. Cardei, “A survey of attacks and countermeasures in mobile ad hoc networks,” in Wireless Network Security. New York, NY, USA: Springer, 2007, pp. 103–135.

7.       N. Pissinou, T. Ghosh, and K. Makki, “Collaborative trust-based secure routing in multihop ad hoc networks,” in Proc. Netw. Netw. Technol., Services, Protocols; Perform. Comput. Commun. Netw.; Mobile Wireless Commun., 2004, pp. 1446–1451.

8.       S. Buchegger and J. Y. Le Boudee, “Self-policing mobile ad hoc networks by reputation systems,” IEEE Commun. Mag., vol. 43, no. 7, pp. 101–107, Jul. 2005.

9.       G. V. Crosby, L. Hesterand, and N. Pissinou, “Location-aware, trust-based detection and isolation of compromised nodes in wireless sensor networks,” Int. J. Netw. Security, vol. 12, no. 2, pp. 107–117, 2011.

10.    Hongmei Deng, Wei Li, and Dharma P. Agrawal, Routing Security in Wireless Ad Hoc Networks, IEEE 2002, pp-70-76

11.    U. Venkanna,  R. Leela Velusamy, Mitigating the Attacks on Recommendation Trust Model for Mobile Ad Hoc Networks, ERCICA 2013, pp-123-130

12.    Wenjia Li, Anupam Joshi, Tim Finin, CAST: Context-Aware Security and Trust Framework for Mobile Ad-hoc Networks Using Policies, Distributed and Parallel Database 2013, pp1-26

13.    Senthil Kumar and E. Logashanmugam, Novel Key Management Techniques in Three-Tier Wireless Sensor Networks, IJCTA 2016, pp-903-910

14.    R. Gayathri, J.Maria Sofi Anusuya, Preventing Malicious Node and Provide Secure Routing In Manet, IOSRJECE 2015, pp.9-13

15.    Aniket Patil,Javed Khan,Ashish Khandave,Abhishek Yadgire, Monika Dangore, Selfish Nodes Detection Techniques in MANET-A Survey, IJRASET 2015, pp.286-291

16.    Ruidong Li, Jie Li, Peng Liu, Jien Kato, A Novel Hybrid Trust Management Framework for MANETs, IEEE 2009, pp.251-256

17.    P Suganya, CH Pradeep Reddy, Potential threats caused by malicious nodes and various counter measures available in MANET: A Survey, RJPBCS, June 2016, pp-1012-1017

18.    Antesar M. Shabut, Keshav P. Dahal, Senior Member, IEEE, Sanat Kumar Bista, and Irfan U. Awan , Recommendation Based Trust Model with an Effective Defence Scheme for MANETs IEEE Oct. 2015, pp.2101-211






Z.G. Ivanova, T. Djouama, M. Poulain, J. Teteris

Paper Title:

Microstructural Characterization and Local Ordering of Fluorophosphate Ternary MnF2-NaPO3-ZnF2 Glasses

 Abstract:  The investigation of physicochemical properties of glasses in connection with their structure and potential applications is an important field of studies. In this work, the microstructural nature of ternary glasses from the MnF2-NaPO3-ZnF2 system has been evaluated by such structure-sensitive parameters as the glass transition temperature (Tg), Vickers microhardness (HV) and their relation. These glasses possess relatively high values of Tg (240-290 oC) and HV (160-275 kg.mm-2). Based on the free-volume theory, the average volume of microvoids (Vh), their formation energy (Eh) and the module of elasticity (Em) have been determined. The relationship between them and the glass composition has been specified. The observed changes in the variation of these parameters have been discussed by the data from Raman scattering and infrared absorption of the glasses studied.

Fluorophosphate glasses; Physical properties; Local structure


1.       H. Ebendorff-Heidepriem, Phosphorus Res. Bull. 13, 11 (2002).
2.       G. Poirier, M. Poulain, Y. Messaddeq, S.J.L. Ribeiro, J. Non-Cryst. Solids 351, 293 (2005).

3.       M. Matecki, M. Poulain, J. Non-Cryst. Solids 56, 111 (1983).

4.       M. Matecki, S. Jordery, J. Lucas, J. Mater. Sci. Lett. 11, 1431 (1992).

5.       M. Matecki, N. Duhamel, J. Lucas, J. Non-Cryst. Solids 184, 273 (1995).

6.       M.J. Weber, J. Non-Cryst. Solids 123, 208 (1990).

7.       J.O. Isard, K.K. Mallick, M. Jayla, Solid State Ionics 9&10, 623 (1983).

8.       L. Cook, M. Liepmann, A.J. Marker, Mater. Sci. Forum 19&20, 305 (1987).

9.       J. Jiang, G. Zhang, M.J. Poulain, J.Non-Cryst.Solids 213&214, 11 (1997).

10.    L. Cook, K.H. Mader, J.Am.Ceram.Soc. 65, 597 (1982).

11.    J. Leissner, K. Sebastian, H. Roggendorf, H. Schmidt, Mater.Sci.Forum 67-68, 137 (1991).

12.    R.K. Sandwick, R.J. Scheller, K.H. Mader, Proc. SPIE 171, 161 (1979).

13.    T. Djouama, A. Boutarfaia, M. Poulain, J. Phys. Chem. Solids 69, 2756 (2008).

14.    T. Djouama, A. Boutarfaia, M. Poulain, J. Optoelectron. Adv. Mater.- Rapid Commun. 1, 122 (2007).

15.    T. Djouama, M. Poulain, M.T. Soltani, A. Boutarfaia, J. Optoelectron. Adv. Mater.- Symposia 3, 358 (2009).

16.    J. Kaluzˇny´, M. Kubliha, V. Labaš, T. Djouama, M. Poulain, J.Non-Cryst. Solids 355, 2003 (2009).

17.    M. Poulain, G. Maze, Chemtronics 3, 77 (1988).

18.    D.S. Sanditov, Fiz. Chim. Stekla 3, 14 (1977) (in Russian).

19.    T. Djouama, M. Poulain, B. Bureau, R. Lebullenger, J. Non-Cryst. Solids 414, 16 (2015).

20.    F. Gan, Y. Jiang, F. Jiang, J. Non-Cryst. Solids 52, 263 (1982).

21.    D.E.C. Corbridge, Topics in Phosphorus Chemistry, Wiley Interscience, New-York, 1969, p. 235.






Viviane C. S. COIMBRA, Nancyleni P. CHAVES, Sebastião V. COIMBRA NETO, Alcina V. de CARVALHO NETA

Paper Title:

Methodology to Identify, Analyze, Classify and Monitor the Reintroduction Risk Points of Foot-and-Mouth Disease

 Abstract:  The aim of the current study is to develop a methodology able to identify, classify and monitor the reintroduction risk points of foot-and-mouth disease (FMD) in order to support an epidemiology monitoring system. The study was conducted in Maranhão State. The methodology was developed in six stages, namely: i) identifying the reintroduction risk points of foot-and-mouth disease; (ii) assessing the risk per identified point; iii)  classifying the risk points; iv) analyzing the spatial distribution of risk points; v) identifying livestock properties under the highest epidemiological risk in comparison to the identified risk points; and vi) systematizing the model used to monitor risk points and livestock properties under the highest epidemiological risk. It was possible identifying and mapping possible points of introduction and/or dissemination of vesicular diseases in 2013 (917 points), 2014 (943 points) and 2015 (886 points). Three hundred and twenty-seven (36.91%) out of the 886 points identified in 2015 were classified as of low risk; 55.87% (n = 495), as of medium risk; and 7.22% (n = 64), as of high risk. The identified points were monitored on a monthly basis, as indicated for the herein assessed risk level, and it totaled 5,021; 5,382 and 5,441 inspections, respectively. Livestock properties under the highest epidemiological risk were also identified, and it totaled 2,894 properties in 2013; 3,057, in 2014; and 3,159, in 2015. These properties were inspected every six months, and it totaled 2,240; 2,294 and 2,353 inspections, respectively. It was concluded that the methodology enables epidemiologically monitoring the reintroduction risk points of Foot-and-Mouth Disease through risk analysis and geoprocessing in association with classic methods.

Keywords:  Epidemiology, Foot-and-mouth disease, Risk analysis, Geoprocessing.


1.       E. Felisberto, “Monitoramento e avaliação, na atenção básica: novos horizontes", Revista Brasileira de Saúde Materno Infantil, Recife, vol. 4, n. 3, 2004, pp. 317-321.
2.       J. A. Moura, “Análise de Risco Como Ferramenta na Prevenção e Controle de Doenças”, In: IV Semana da Caprinocultura e Ovinocultura Brasileiras, Sobral: EMBRAPA Caprinos, 2004a.

3.       J. A. Moura, “Análise de Risco – Importância na Prevenção de Doenças”, Revista Brasileira de Medicina Veterinária, vol. 26, n. 3, 2004b, pp. 103-105.

4.       D. V. Santos, B. Todeschini, C. M. B. M. Rocha, L. G. Corbellini, “A análise de risco como ferramenta estratégica para o serviço veterinário oficial brasileiro: dificuldades e desafios”, Pesq. Vet. Bras, vol. 34, n. 6, 2014, pp. 542-554.

5.       Brasil, Ministério de Agricultura, Pecuária e Abastecimento, Secretaria Nacional de Defesa Agropecuária, Departamento de Sanidade Agropecuária, Programa Nacional de Erradicação e Prevenção da Febre Aftosa, “Vigilância veterinária de doenças vesiculares: Orientações gerais”, Brasília, 2007, p. 49.

6.       Maranhão, Agência Estadual de Defesa Agropecuária do Estado do Maranhão. Coordenadoria de Defesa Animal, “Procedimento operacional padrão para identificação e classificação dos possíveis pontos de introdução e/ou disseminação de enfermidades vesiculares e das propriedades pecuárias sob risco epidemiológico, 2009”, São Luís: AGED-MA, p. 46.

7.       M. M. Tamada, T. A. Souza Filho, D. F. B. Coelho, V. B. Souza, “Uso do sistema de Informação geográfica como ferramenta auxiliar para tomada de decisão: aplicação à pecuária leiteira”, In: VI CONVIBRA, 4, São Paulo, Anais... (Resumo), 2009.

8.       C. Barcellos, W. Ramalho, “Situação atual do geoprocessamento e da análise de dados espaciais em saúde no Brasil”, Informática Pública, Belo Horizonte, vol. 4, n. 2, 2002, pp. 221-230.

9.       Caten, R. S. D. Dalmolin, F. A. Pedron, M. L. MendonçaSantos, “Estatística multivariada aplicada à diminuição do número de preditores no mapeamento digital do solo”, Pesquisa Agropecuária Brasileira, Brasília, vol. 46, n. 5, 2011, pp. 554-562.

10.    Brasil, Ministério da Agricultura, Pecuária e Abastecimento, Secretaria Nacional de Defesa Agropecuária, Departamento de Sanidade Agropecuária, (2015, Jun 20), “Portaria nº 50 de 19 de maio de 1997”. Available: http://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=consultarLegislacaoFederal 

11.    Panaftosa, Centro Panamericano de Fiebre Aftosa, (2015, Dez 10), “Sistema de vigilância ativa em zonas fronteiriça com base em análise de risco: Proposta Metodológica”. Available: http://ww3.panaftosa.org.br/Comp/MAPA/432844.pdf 

12.    J. H. Zar, “Biostatistical Analysis”, 4th ed. Upper Saddle River, Prentice Hall, 1999, p. 663.

13.    Brasil. “Posicionamento global por satélite, uma ferramenta essencial na produção da defesa sanitária animal”, SDA, DAS, Ministério de Agricultura, Pecuária e Abastecimento, Brasília, 2005, pp. 71-81.

14.    FAO, Food na Agrculture Organization, “Aplicación de SIG em la epidemiologia de Fiebre Aftosa em la Argentina”, Of. Reg. América Latina y el Caribe, Santiago, Chile, 2005, p. 72.

15.    V. L. Saraiva, “Bases metodológicas para caracterização de risco”, Revista Brasileira de Medicina Veterinária, vol. 21, n. 5, 1999, pp. 188-191.

16.    R. A. Medronho, G. L. Werneck, “Epidemiologia”, p.427-446. In: R. A. Medronho, D. M. Carvalho, K. V. BLOCH, R. R. Luiz, G. L. WERNECH, (Eds), Técnicas de Análise Espacial em Saúde, São Paulo: Editora Atheneu. 2006.

17.    C. N. Inês, “Febre aftosa e sua importância socioeconômica”, 2008, p. 26, Monografia (Especialização e Latu sensu em Inspeção e Higiene de Produtos de Origem Animal). Universidade Castelo Branco, Rio de Janeiro, 2008.

18.    C. L. Gwyther, A. P. Williams, P. N. Golyshin, G. Edwards-Jones, D. Jones,  “The environmental and biosecurity characteristics of livestock carcass disposal methods: A review”, Waste management.  vol. 31, 2011, pp. 767–778.

19.    Maranhão, Agência Estadual de Defesa Agropecuária do Estado do Maranhão, Coordenadoria de Defesa Animal, (2016, Nov 10), “Eventos Agropecuários”, São Luís: AGED-MA. Available: http://www.aged.ma.gov.br/eventos-agropecuarios/ 

20.    DNIT, Departamento Nacional de Infraestrutura de Transportes, (2016, Nov 18), “Relatório dos levantamentos funcionais das rodovias federais”. Available: http://www.dnit.gov.br/download/planejamento-e-pesquisa/planejamento/evolucao-da-malha-rodoviaria/Relatorio%20SGP%202011-2012.pdf 

21.    IBGE, Instituto Brasileiro de Geografia e Estatística, (2016, Jan 18), “Estados”, Available: http://www.ibge.gov.br/estadosat/perfil.php?lang=&sigla=ma 

22.    Vale, Mineradora Vale, (2016, Jan 10), “Trem de passageiros da Estrada de Ferro Carajás” Available: http://www.vale.com/brasil/PT/business/logistics/railways/Passenger-Train-Service-Carajas/Paginas/default.aspx

23.    M. Pituco, (2015, Jun 10), “A importância da Febre Aftosa em Saúde Pública”, Centro de Pesquisa e Desenvolvimento de Sanidade Animal, Instituto biológico, São Paulo, 2005. Available: http://www.biologico.sp.gov.br/artigos_ok.php?id_%20artigo%20=17 

24.    S. Rojanasthien, P. Padungtod, P. Yamsakul, S. Kongkaew, T. Yano, “Risk factors for foot and mouth disease in ruminants in Chiang mai, Lumphun and Nan”. In: PROCEEDINGS OF THE KASETSART UNIVERSITY ANNUAL CONFERENCE, 44, Kasetsart: Kasetsart University, 2006, pp. 486- 493.

25.    K. Dukpa, “The Epidemiology of Foot-and-Mouth Disease in the Kingdom of Bhutan”, Tese (Doutorado), School of Veterinary and Biomedical Sciences, Murdoch University, Austrália, 2011, p. 364.

26.    Aliceweb, Sistema de Análise de Informações de Comércio Exterior. (2016, Jun 23), “Exportações brasileiras de animais vivos via marítima”. 2016. Available: http://aliceweb.desenvolvimento.gov.br/ 

27.    M. K. V. C. Delphino, “Avaliação do risco de difusão do vírus da febre aftosa em produtos suínos exportados pela região sul do Brasil”, Dissertação (Mestrado), Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Brasília-DF, 2010, p. 73.

28.    T. B. Amaral, V. Gond, A. Tran, “Mapeamento do risco de introdução da febre aftosa na fronteira do Brasil com o Paraguai”, Pesquisa Agropecuária, vol. 51, n. 5, Mai. 2016, pp. 661-670.

29.    N. P. Chaves, D. C. Bezerra, V. C. S. Coimbra, A. L. Abreu-Silva, “Risk Areas for the Insertion of Infectious Agents The Implementation of Geoprocessing in Epidemiology”, International Journal of Innovative Technology and Exploring Engineering-IJITEE, vol. 04, n. 10, Mar. 2015, pp. 01-06.

30.    Brasil, Ministério da Agricultura, Pecuária e Abastecimento, Secretaria Nacional de Defesa Agropecuária. Departamento de Sanidade Agropecuária, Programa Nacional de Erradicação e Prevenção da Febre Aftosa, “Manual de padronização sobre organização das informações sobre estrutura dos órgãos executores de defesa agropecuária, emissão e controle de Guia de Trânsito Animal (GTA) e constituição e manutenção de cadastro de propriedades rurais, exploração pecuária e produtor rural”, Brasília: MAPA/SDA/DAS, 2009, p. 31