International Journal of Innovative Science and Modern Engineering(TM)
Exploring Innovation| ISSN:2319–6386(Online)| Reg. No.:68121/BPL/CE/12| Published by BEIESP| Impact Factor:3.86
Author Guidelines
Publication Fee
Privacy Policy
Associated Journals
Frequently Asked Questions
Contact Us
Volume-4 Issue-2: Published on January 15, 2016
Volume-4 Issue-2: Published on January 15, 2016

  Download Abstract Book

S. No

Volume-4 Issue-2, January 2016, ISSN: 2319–6386 (Online)
Published By: Blue Eyes Intelligence Engineering & Sciences Publication Pvt. Ltd. 

Page No.



M. Sazid, M.R. Saharan, T.N. Singh

Paper Title:

Enhancement of the Explosive Energy Utilization with the Application of New Stemming Contrivance

Abstract:   The effect of confinement on explosive energy utilization in rock blasting was studied by using a new stemming contrivance named SPARSH .To achieve the objectives an experiment blast was carried out using SPARSH. The experiment blast was analysed by high speed video camera. Post blast observations were also conducted to identify the blast results. Results were compared with the conventional stemming applying drill cuttings as stemming material for a part of the experimental blast. It was noticed that application of SPARSH results into increase in the explosive energy retention time, reduce ejection velocity and stemming ejection height. The combined effect of the higher retention time, the reduced stemming ejection height and the lower stemming ejection velocity manifests into a larger component of the explosive energy available for rock breakage which assists into safer economical ore liberation process.

stemming contrivance, explosive energy utilisation, energy retention time, stemming ejection velocity, stemming ejection height, high speed imaging.


1.             Burgoyne, J.S. 1849. Rudimentary treatise on the blasting and quarrying of stone. London. 61p. Cancec, A.T., Gallardo, N.G. and Gutierrez, M.S. 2001. The importance of the explosive confinement. 27th ISEE  Confenrenc. Vol. 2. pp. 107-120.
2.             Gonjalez, G.L.G. 2010. Mechanical stemming apparatus for mining blasting operations. US Patent 007690307B2.

3.             Hudson, J.A. 1993. The construction process in comprehensive rock engineering-principals practices and projects. Vol. 4. pp. 1-37.

4.             Jhanwar, J.C. 2011. Theory and practice of air-deck blasting in mines and surface excavations: a review. Geotech Geol Eng. Vol. 29, no. 5. pp. 651-663.

5.             Johnsson, G. and Hofmeister, W. 1961. The influence of stemming on the efficiency of blasting using 36mm shot holes. Int. Sym. on mining research. University of Missouri. Vol. 1. pp. 91-102.

6.             Kalmbach, C.L. 1874. Improvement in methods of tamping. US Patent 155,731.

7.             Kirby, I.J. and Lieper, G.A. 1985. A small divergent detonation theory for intermolecular explosives.  Proc. 8th Int. Symp. Detonation, New Maxico. pp. 176-186.

8.             Konya, C.J. 1978. The effects of stemming consist on retention in blast holes. 4th ISEE Conf. pp. 102-112.

9.             Kutter, H.K. and Fairhurst, C. 1971. On the fracture process in blasting, Int. J. Rock. Mech. Min. Sci. Vol. 8. pp. 181-202.

10.           Liu, L. and Katsabanis, P.D. 1996. Numerical modeling of the effects of air decking/decoupling in production and controlled blasting. Proc. 5th Int. conf. on rock fragmentation by blasting, Mohanty (ed), A. A. Balkema, Rotterdam. pp. 319–330.

11.           Lownds, C.M. 1986. The strength of explosives. In Proc. The planning and operation of open-pit and strip mines, SAIMM, Johannesburg. pp. 151-159.

12.           Lownds, C.M. and Du Plessis, M.P. 1984.: The behaviour of explosives in intermediate-diameter boreholes. In Proc. Inst. Quarrying  Trans.  pp. 709-804.

13.           Mel’Nikov, N.V. 1940. Utilisation of energy of explosives and fragment size of rock in blasting operations. Gorn Zh. Vol. 5. pp. 565-572.

14.           Mel’Nikov, N.V. and Marchenko, L.N. 1971. Effective methods of application of explosive energy in mining and construction. 12th Symp dyn rock mech, AIME, New York. pp. 350–378.

15.           Monjezi, M. and Dehghani, H. 2008. Evaluation of effect of blasting pattern parameters on backbreak using neural networks. Int J Rock Mech Min Sci. Vol. 45. pp. 1446–1453.

16.           Monjezi, M., Rezaei, M. and Yazdian, A. 2010. Prediction of back break in open-pit blasting using fuzzy set theory. Expert Syst Appl. Vol. 37. pp. 2637–2643.

17.           Otuonye, F.O. 1981. Effective blasthole stemming- A laboratory study. Ph.D Dissertation, Ohio State University, USA.

18.           Saharan, M.R. 2004. Dynamic numerical modeling of rock fracturing by distress blasting. Ph.D. thesis, McGill university, Montreal. pp. 1-267.

19.           Sazid M, Wasnik A.B., Singh P.K, Kainthola A., Singh T.N. 2012. A Numerical Simulation of Influence of Rock Class on Blast Performance, International Journal of Earth Sciences and Engineering, 5 (5), 1189-1195.

20.           Sazid M., Saharan M.R. and Singh T.N. (2011). Effective Explosive Energy Utilization for Engineering Blasting- Initial Results of an Inventive Stemming plug, SPARSH. Harmonising Rock Engineering and the Environment, 12th ISRM Congress, 1265-1268

21.           Sazid M., Singh T.N. (2013). Two dimensional Dynamic Finite Element Simulation of Rock Blasting. Arab J Geosci. Vol 6(10), 3703-3708. 

22.           Sazid M., Singh T.N. (2015). Numerical assessment of spacing–burden ratio to effective utilization of explosive energy. Int J Min Sci & Tech. 25 (2), 291-297

23.           Scott, A., Cocker, A., Djordjevic, N., Higgins, M.La., Rosa, D., Sarma, K.S. and Wedmaier, R. 1996. Open pit blast design – analysis and optimisation. JKMRC monograph series in mining & mineral processing, Julius Kruttschnitt Mineral Research Centre, The University of Queensland, Australia. 338p.

24.           Singh, T.N., Sazid, M. and Saharan, M.R. 2012. A Study to Simulate Air Deck Crater Blast Formation - A Numerical Approach. International Society for Rock Mechanics.7th ARMS, Coex, Seoul, Korea.

25.           Snelling, W.O. and Hall, C. 1912. The effect of stemming on the efficiency of explosives. USBM. Vol. 17. pp. 1-20.

26.           Thote, N.R. and Singh, D.P. 2000. Effect of air-decking on fragmentation: a few case studies of Indian mining. Explosive & Blasting Technique, Balkema. pp. 257-265.

27.           Udy, L.L. and Lownds, C.M. 1990. The partition of energy in blasting with non-ideal explosives. In Proc. 3rd Int. Symp. Rock Fragmentation by blasting, FRAGBLAST, Brisbane, Australia.  pp. 37-43.

28.           Whittaker, B.N. 1992. Chapter 13: fracture mechanics applied to rock fragmentation due to blasting in rock fracture mechanics. pp. 443-480.

29.           Worsey, P.N., Farmer, I.W. and Matheson, G.D. 1981. The mechanics of pre-split blasting to rock slopes. Proc 22nd US Symp Rock Mech, MIT, Boston, Masschusetts. pp. 205-210.




Hemal Lotankar, Srinivas Daketi

Paper Title:

Rediscovering Traditional Mughal Fenestrations (16th to 17th Century) in India for Sustainable Architecture

Abstract: Fenestration is an interface between the exterior and interior. The complexities of functions of fenestrations have increased over the period of time. Traditional culture, art and knowledge find no place in this globalized world. As we embrace new materials and techniques, achieving thermal and visual comfort has become challenging. There is a missing link between the traditional and contemporary architecture of which fenestrations stand as evidence. Energy consumption for air conditioning and lighting can be reduced significantly through appropriate design of fenestrations. There is a need to understand the proper day lighting and natural ventilation and its impact on saving energy in buildings. Therefore, it is necessary to scientifically understand the techniques evolved in the past. The study focuses on understanding and analyzing traditional building fenestrations, which will help in determining the feasibility for its application in contemporary projects. The research highlights fenestrations of 16th-17th century Mughal buildings through literature review and case studies. It explores examples of fenestration designs responsive to the culture of the place and climate thereby achieving thermal comfort. The study provides guidelines to incorporate traditional fenestration designs with a modern approach to overcome the environmental disturbances and retain the cultural identity of the place.

  Fenestrations, Mughal Architecture,Climate, Culture


1.             AgarwalA , Jain R.K , Ahuja R (2006) Shekhawati: urbanism in the semi-desert of India A climatic study, India.In 23rd International Plea Conference. 6-8 September 2006. Geneva, Switzerland
2.             Soflaee, F., &Shokouhian, M. (2005). Natural Cooling Systems in sustainable traditional architecture of Iran. International Conference "Passive and Low Energy Cooling for the BuiltEnvironment", (pp. 715-719). Santorini.

3.             Ashar, B. (2003) Architecture of Mughal India. Cambridge University Press

4.             Ali A,(2012) Passive Cooling and Vernacularism in Mughal Buildings in North India: A Sourceof Inspiration for Sustainable Development, Aigarh Muslim University, India

5.             Narkhede P,(2010) The Impact of Climatic and Cultural Factors on Openings in TraditionalHouses in Maharashtra, Time, space and people, [ Online] pp. 28-41, [Accessed : 25th August 2015]

6.             Tipnis A, (2012) ‘The Indian Vernacular Architecture’. Vernacular Traditions Contemporary Architecture. The Energy and Resource Institute–TERI. New Delhi. 33-49

7.             Sundar N, (2014) Let there be light. The Hindu. 17 October.[Online]. Available from:[Accessed: 25thAugust 2015]
8.             PatidatS, (2014) Changes in Culture and Architecture from Vernacular to Modern: M.P., India.In 30th International Plea Conference. 16-18 December 2014, CEPT University. Ahmedabad

9.    ,Indian Archaeological Society of Indian [Online] [Accessed: 14.11.2015]

10.           Krishnan A (2001), ‘Climate Responsive Architecture: A Design Handbook for Energy Efficient’ [Online] [Accessed: 27 September 2015], New Delhi




Abdullah Al Mamun

Paper Title:

Constraints for Bangladeshi RMG Factories to be Compliant

Abstract:  Now-a-days, readymade garment (RMG) sector is considered as the backbone of the country because of its extended economic growth in the last couple of decades. Among many other challenges, compliance issue of RMG factories is the key requirement for most of the reputed global garments buyers. Compliance ensures all social and environmental standards set up by different organizations. Out of five thousands RMG industries in Bangladesh, some are quite small and their investment capabilities on compliance are not same while compared with large factories. This paper is based on descriptive and inferential research of the compliance procedure of small, medium and large RMG industries. Five point scale system is used in this investigation to do rating of three factories based on nine different issues of compliance. The study shows highest rating in case of large industries among three industries and indicates that the performance on compliance of large factory is comparatively better than that of the medium and small ones. This research work also identified the constraints of the compliance procedure of different RMG factories and suggests the improvement procedure of the factories. The study finally suggests that for the sustainable development of this sector in future, factory owners must need to concentrate on the working environment of the factory, health, safety and security, social issues, labor relations and other areas of compliance and there are also scopes for development of  RMG sector in Bangladesh.

Keywords: BNW, Compliance, COC, RMG, WPC.


2.             (Retrieved date: 09.11.2015, retrieved time: 12.07 pm)
4.             (Retrieved date: 13.07.2015, retrieved time: 07.10 pm)
6.             (Retrieved date: 22.10.2015, retrieved time: 11.05 am)
8.             (Retrieved date: 17.11.2015, retrieved time: 06.13 pm)
10.           (Retrieved date: 11.09.2015, retrieved time: 03.17 pm)
11.           Baral, L.M., Comparative study of compliant & non-compliant RMG factories in Bangladesh, International Journal of Engineering & Technology (IJET-IJENS), Vol.10 (2), pp.119.
12.           Rahman, M. A., Hossain, M.S., Compliance practices in garment industries in Dhaka city, Journal of business and technology, vol.5(2),Jjuly-December, 2010.




Vijender Singh, Deepak Garg

Paper Title:

Review of Various Algorithms in Graph Mining Based on Search Strategies

Abstract: Graph mining is an active research area during these days. Graphs have become significant in the modeling of complicated structures such as circuit images, chemical compounds, protein structures, biological networks, social networks, web workflows and XML documents. A common framework is necessary to study various graph mining algorithms and their applications. In this paper, we present a review study of various algorithms based on their graph representation, subgraph generation, algorithm approach, frequency evaluation and search strategy. 

 Subgraphs, Graph Mining, Algorithms


1.             Agarwal, R. Srikant, R. Fast algorithm for mining association rules. In the proc. Of the 20th Int. conf. on very large databases (VLDB),1994, 487-499..
2.             Adriaans, P. Zantinge, D. Data Mining. Pearson education Asia, 2002.

3.             Artymiuk, P.J. Spriggs, R.V. Willett, P. Graph theoretic methods for the analysis of  structural relationships in biological macromolecules. Journal of the American society for information science & technology, 2005, 56:5, 518-528.

4.             Artymiuk, P.J. Poirrette, A.R. Grindley, H.M. Rice, D.W. Willett, P. A graph-theoretic approach to the identification of three dimensional patterns of amino acid side-chains in protein structures. Journal of molecular biology, 1994, 243, 327-344.

5.             Asai, T. Abe, K. Kawasoe, S. Arimura, H. Satamoto, H. Arikawa, S. Efficient substructure discovery from large semi-structured data. In proceedings for the 2002 SIAM international conference on data mining (SDM’02) Arlington VA, 2002, 158-174.

6.             Borgett, C. On canonical forms for frequent Graph Mining. Springer, 2007, 337-349.

7.             Borgelt, C. Berthold, M.R. Mining molecular fragments: Finding relevant substructures of molecules. In proc. 2002 int. conf. Data mining(ICDM’02), IEEE, 2002, 51-58.

8.             Borgelt, C. Meinl, T. Berthold, M.R. Advanced Pruning strategies to speed up mining closed molecular fragments. IEEE (int. conf.), 2004, 4565-4570.

9.             Brin, S. Page, L. The Anatomy of a large-scale hypertextual web search engine. In proc. 7th International conference on the www., 1998, 107-117.

10.           Burdick, D. Calimlim, M. Gehrke, J. MAFIA: A maximal frequent itemset algorithm for transactional databases. IEEE, 2005, 17:11, 1490-1504.

11.           Conte, D. Guidobaldi, C.Sansonr, C. A comparison of three maximum common subgraph algorithms on a large database of labeled graphs. IAPR workshop GBPR 2003, LNCS, 2003, 2726, 130-141.

12.           Cao, Y. Jiang, T. Girke, T. A maximum common substructure-based algorithm for searching and predicting drug like compounds. Bioinformatics, 2008, 24:13, i366-i374.

13.           Deshpande, M. Kuramochi, M. Karypis, G. Automated approaches for classifying structures. In Proc. 2002 workshop on Data mining in Bioinformatics (BIOKDD’02), 2002, 11-18.

14.           Dehaspe, L. Toivonen, H. King, R.D. Finding Frequent substructures in chemical compounds. In 4th international conference on knowledge discovery and data mining. 1998.

15.           Dehaspe, L. Toivonen, H. Discovery of frequent DATALOG Patterns. Data mining and knowledge discovery, 1999, 3, 7-36.

16.           Desrosiers, C. Galinier, P. Hertz, A. Improving frequent subgraph mining in the presence of symmetry. 5th international workshop on mining, 2007.

17.           Deo, N.S. Graph theory with applications to engineering and computer science. Prentice hall of India new Delhi, 2008

18.           Ehrlich, H.C. Rarey, M. Maximum Common Subgraph isomorphism algorithms and their applications in molecular science: a review. John wiley and sons ltd, 2011, 1, 68-79.

19.           Hu, H. Yan, X. Huang, Y. Han, J. Zhou, X.J. Mining coherent dense subgraphs across massive biological networks for functional discovery, Bioinformatics,2005, 21, i213-i221.

20.           Holder, L.B. Cook, D.J. Djoko, S. Substructure Discovery in the SUBDUE system. In proceedings AAAI’94 workshop knowledge Discovery in Database (KDD’94),1994, 169-180.

21.           Huan, J. Wang, W. Prins, J. Efficient Mining of frequent subgraph in the presence of Isomorphism. In proc. 2003 Int. conf. Data mining (ICDM’03), 2003, 549-552.

22.           Helal, N.A. Soliman, T.H.A. Karam, O.H. Analyzing efficient embedding list structures in subgraph mining. IADIS European conference data mining, 2007, 129-134.

23.           Haun, J. Wang, W. Prins, J. Yang, J. Spin: Mining Maximal Frequent subgraph from graph databases. KDD’04 Seattle, Washington, USA. 2004.

24.           Han, J. Kamber, M. Data Mining: Concepts and techniques. Second edition, Elsevier, 2006.

25.           Inokuchi, A. Washio, T. Motoda, H. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data. In Proc. 2000 European Symp. Principle of Data mining and Knowledge Discovery (PKDD’00), 1998, 13-23.

26.           Inokuchi, A. Washio, T. Nishimura, K. Motoda, H A fast algorithm for mining frequent connected, research report IBM Japan, 2002

27.           Jiang, C. Coenen, F. Zito, M. Frequent Sub-graph on Edge Weighted Graphs. Springer, 77-88, 2010.

28.           Kuramochi, M. Karypis, G. Frequent Subgraph Discovery. In Proc. 2001 Int. conf. Data mining (ICDM’01), 313-320, 2001.

29.           Kuramochi, M. Karypis, G. Finding frequent patterns in a large sparse graph. Data mining knowledge discovery, 11(3), 243-271, 2005.

30.           Kuramochi, M. Karypis, G. GREW a scalable frequent subgraph discovery algorithm. Technical report 04-024, University of Minnesota, department of computer science, 2004.

31.           Kramer, S. Raedt, L.D. Helma, C. Molecular Feature mining in HIV data. In Proceedings of the seventh ACM SIGKDD International conf. on knowledge discovery and data mining, pp. 136-143, 2001.

32.           Koyuturk, M. Grama, A. Szpankowski, W. An efficient algorithm for detecting frequent subgraphs in biological networks. Bioinformatics, 20: i200-i207, 2004.

33.           Krishna, V. Suri, N.R.R.R. Athithan, G. A comparative survey of algorithms for frequent subgraph discovery. Current science, 100:2, 190-198, 2011.

34.           Liu, Y. Li, J. Zhu, J. Gao, H. Mining Top-K graph patterns that Jointly maximize some significance Measure. J. of computers, 5(4), 566-572, 2010.

35.           Li, X.L. Tan, S.H. Foo, C.I. Ng, S.K. Interaction graph mining for protein complexes using local clique merging. Genome Informatics, 16(2): 260-269, 2005.

36.           Matsuda, T. Horiuchi, T. Motoda, H. Washio, T. Extension of graph-based induction for general graph structured data. In Proceeding of 4th Pacific Asia conference of knowledge discovery and data mining (PAKDD 2000),2000, 420-431.

37.           Meinl, T. Borgelt, C. Berthold, M.R. Discriminative closed Fragment Mining and perfect extensions in MoFa. 2004.

38.           Meinl, T. Worlein, M. Fischer, I. Philippsen, M. Mining Molecular datasets on Symmetric Multiprocessor systems. 2006.

39.           Meinl, T. Worlein, M. Urzova, O. Fischer, I. Philippsen, M. The ParMol package for frequent subgraph mining. Electronics communication of ESST 1, 2006.

40.           McKay, B.D. NAUTY. Users guide (version 1.5) technical report, TR-CS-90-02, Department of computer science, Australian National University, 1990.

41.           Muggleton, S. Inductive logic Programming, Academic Press, 1992.

42.           McGregor, J. backtrack search algorithms and the maximal common subgraph problem. Software practice and experience,1982, 12, 23-34.

43.           Nijssen, S. Kok, J.N. A Quickstart in frequent structure mining can make a difference. In proceedings of 10th ACM SIGKDD International conference on knowledge Discovery and Data mining, ACM,2004, 647-652.

44.           Nijssen, S. Kok, J.N. Faster association rules rules for multiple relations. In IJCAT’01: 17th Int. joint conf. artificial intelligence, 2001, 2, 891-896.

45.           Nguyen, S.N. Orlowska, M.E. Li, X. Graph mining based a data partitioning approach. In proceedings of the 19th conference on Australasian database, 2008,75, 31-37.

46.           Pei, J. Han, J. Mortazavi-Asl, B. Pinto, H. PrefixSpan: Mining Sequential Patterns efficiently by prefix-Projected Pattern Growth. In Proc. 2001 Int. conf. Data Engineering (ICDE’01), 2001, 215-224.

47.           Priyadarshini, S. Mishra, D. g-FSG Approach for finding subgraph. IJCCT, 2010,1:2,3,4, 68-71.

48.           Page, L. Brin, S. Motwani, R. Winograd, T. The page rank citation ranking: Bringing order to the web. TR 1999-66 stanford university Stanford USA, MA 1998.

49.           Reinhardt, S. Karypis, G. A multilevel parallel implementation of a program for finding frequent patterns in a large sparse graph. IEEE, 2007.

50.           Raymond J.W. Gardiner, E.J. Willett, P. RASCAL: calculation of graph similarity using maximum common edge subgraphs. The computer journal, 2002, 45:6, 631-644.

51.           Singh, V. Garg, D. “Survey Of finding frequent patterns in Graph Mining: Algorithms and Techniques” IJSCE, 2011, 1:3,19-23.

52.           Thomus, L. Valluri, S. Karlapalem, K. Isg: Itemset based subgraph mining. Technical report, IIIT, Hyderabad, 2009

53.           Ullamann, J.R. “An algorithm for subgraph isomorphism”. J. ACM, 23, 1976, pp. 31-42.

54.           Vanetik, N. Gudes, E. Shimony, S.E. computing frequent graph patterns from semistructured data. In proceedings of 2002 IEEE international conference on
data mining (KDM), 2002,458-465.

55.           Worlein, M. Meinl, T. Fischer, I. Philippsen, M. A Quantative comparison of the subgraph miners MoFa, gSpan, FFSM and GASTON. 2005.

56.           Washio, T. Motoda, H. State of the art of Graph-based data mining. SIGKDD Explorations,2003, 5:59-68.

57.           Yan, X. Han, J. gSpan: Graph-Based Substructure Pattern Mining. In Proc. 2002 Int. conf. Data mining, 2002, 721-724.

58.           Yan, X. Han, J. CloseGraphs : Mining Closed Frequent Graphs Patterns. In Proc. 2003 ACM SIGKDD Int. conf. knowledge Discovery and Data mining (KDD’03), 2003, 286-295.

59.           Yan, X. Han, J. Afshar, R. CloSpan: Mining Closed Sequential Patterns in Large Datasets. In Proc. 2003 SIAM Int. conf. Data mining (SDM’03), 2003,166-177.

60.           Yan, X. Yu, P.S. Han, J. Substructure similarity search in graph databases. In Proc. 2005 ACM-SIGMOD Int. conf. Management of Data (SIGMOD’05), 2005, 766-777.

61.           Yan, X. Yu, P.S. Han, J. Graph Indexing: A frequent structure-based approach. In Proc. 2004 ACM-SIGMOD Int. conf. Management of Data (SIGMOD’04), 2004.

62.           Yan, X. Zhou, X.J. Han, J. Mining closed relational graphs with connectivity constraints. ACM, (KDD05), 2005.

63.           Yoshida, K. Motoda, H. Indurkhya, N. graph based induction as a unifield learning framework. J. of applied of Intel,1994, 4:297-328.

64.           Zaki, M.J. Efficiently Mining Frequent trees in a forest. In Proc. 2002 ACM SIGKDD Int. conf. knowledge Discovery and Data mining (KDD’02), 2002, 71-80.

65.           Zaki, M.J. Hsiao, C.J. CHARM: an efficient algorithm for closed itemset mining. In proceeding of the 2002 SIAM international conference on data mining (SDM’02) Arlington, VA, 2002, 457-473.

66.           Zaki, M.J. SPADE: an efficient algorithm for mining frequent sequences. Mach. Learn., 2001,40, 31-60.




Anoop Kumar Singh, Sudhir Kumar Srivastava, Vikas Pandey

Paper Title:

Load Frequency Control of Multi Area Power System using Different Intelligent Controllers

Abstract:   In power system engineering exact load prediction is difficult task because a continuous load changing in power systems network that disturb the frequency directly. If the frequency is deviate from its limit, there show a severe effect on power system. So   load frequency controller (LFC) is designed and if it working properly, the frequency is quickly returned to the normal operating point that means steady state error become zero. There are two types of controllers used in this paper which are Fuzzy controllers and GA-PID (pid controller tuned by genetic algorithm) controllers. The performance of GA-PID controller is quite fast and efficient. The result shows an improved performance in terms of rise time, settling time, steady state error and overshoot. In this paper we use linear single area (thermal) and two area (thermal-thermal) model for simplification.  The effectiveness of the proposed controller is confirmed via extensive study using MATLAB/SIMULINK software. Simulation results are carried out by 10% system disturbances in both of one and two areas power system.

 Fuzzy controller, genetic algorithm, load frequency control, PID controller.


1.             Dulpichet Rerkpreedapong , Ali Feliachi , N. Atic “Economy Oriented Model Predictive Load Frequency Control ” USDOEEPSCOR WV State Implementation Award  IEEE 2003
2.             Y. Wang, R. Zhou, C. “Wen Robust; load-frequency controller design for power systems” IEE PROCEEDINGS-C. Val 140. No I , JANUARY 1993

3.             Pan C. T. and C. M. Liaw, “An adaptive controller for power system load frequency control“, IEEE Trans. On Power Systems, Vo1.4, No.1, PP.122-128, 1988.

4.             Saadat, Hadi; “ Power System Analysis” McGraw-Hill,1999

5.             Nagrath I.J. and Kothari D.P.; “Modern Power System Analysis ” McGraw-Hill,2004,New Delhi

6.             R. C. Bansa, "Bibliography on the fuzzy set theory applications in power systems (1994-2001)", IEEE Transactions on Power Systems, vol. 18 (4), pp. 1291-1299, November 2003.

7.             J. Bih, "Paradigm shift - an introduction to fuzzy logic", IEEE Potentials, vol. 25 (1), pp. 6-21, 2006.

8.             K. Krishnakumar and D. E.Goldberg, .Control System Optimization Using Genetic Algorithms., Journal of Guidance, Control and Dynamics, Vol. 15, No. 3, pp. 735-740, 1992.

9.             T O.Mahony, C J Downing and K Fatla, .Genetic Algorithm for PID Parameter Optimization: Minimizing Error Criteria., Process Control and Instrumentation 2000 26-28 July 2000, University of Stracthclyde, pg 148-153, July 2000.

10.           Varsek, T. Urbacic and B. Filipic, .Genetic Algorithms in Controller Design and Tuning., IEEE Trans. Sys.Man and Cyber, Vol. 23, No. 5, pp1330-1339, 1993