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 Abstract: The work involves first-principles calculations to 

study the mechanism of adsorption of water molecules on the 

surface of ZrO2 and their yttrium-stabilized structures (YSZ). 

Calculations of the electronic properties of ZrO2 showed that 

during the m-t phase transformation of ZrO2, the Fermi level first 

shifts by 0.125 eV towards the conduction band, and then in the t-

c region goes down by 0.08 eV. In this case, the band gaps for c-

ZrO2, t-ZrO2 and m-ZrO2, respectively, are 5.140 eV, 5.898 eV and 

5.288 eV. Calculations to determine the surface energy showed 

that t-ZrO2 (101) and m-ZrO2 (111) have the most stable structure, 

on the basis of which it was first discovered that the surface energy 

is somehow inversely related to the value of the band gap, since as 

the band gap increases, the surface energy tends to decrease. An 

analysis of the mechanism of water adsorption on the surface of t-

ZrO2 (101) and t-YSZ (101) showed that H2O on unstabilized t-

ZrO2 (101) is adsorbed dissociatively with an energy of −1.22 eV, 

as well as by the method of molecular chemisorption with an 

energy of −0.69 eV and the formation of a hydrogen bond with a 

bond length of 1.01 Å. In the case of t-YSZ (101), water is 

molecularly adsorbed onto the surface with an energy of −1.84 eV. 

Dissociative adsorption of water occurs at an energy of −1.23 eV, 

near the yttrium atom. The obtained results complement the 

database of research works carried out in the field of the 

application of biocompatible zirconium dioxide crystals and 

ceramics in green energy generation, and can be used in designing 

humidity-to-electricity converters and in creating solid oxide fuel 

cells based on ZrO2. 

Keywords: Zirconium Dioxide, Stability, Yttrium-Stabilized 

Zirconium Dioxide, Phase Transition, Fermi Level Shift, Water 

Adsorption on The Surface. 

I. INTRODUCTION 

Solid-state materials based on zirconia have been 

extensively studied in recent years because of their excellent 

electrical, optical, and mechanical properties. They are also 

biocompatible and have a wide range of biomedical 

applications. Tetragonal phase yttrium-stabilized zirconia (Y-

TZP) has been used in various medical applications since the 

1980s, particularly for dental crowns [1]. In addition, bulk 

materials and nanocomposites based on ZrO2 are used in 

electrochemical cells because of their high oxide ion 

conductivity and catalytic activity, low thermal conductivity, 

mechanical/chemical stability, and compatibility with 

electrolytes, which make them structurally advantageous 

[2,3]. Many technological applications of zirconia (pure 

ZrO2 or its stabilized alloys) are directly related to its 

interaction with water.  
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Examples are internal steam reforming in solid oxide fuel 

cells [4], catalysis [5], gas sensors [6], or its use as a 

biocompatible material [7]. ZrO2 surfaces have also been 

proposed as suitable materials for hydrogen storage [4–8]. 

However, little is known about the interaction of water with 

ZrO2 surfaces at a fundamental level, which is mainly due to 

the lack of suitable samples. This is quite different for other 

oxide substrates [8–10]. Water is weakly adsorbed by many 

defect-free oxide surfaces in an ultra-high vacuum, then 

stripped at a temperature below room temperature. Usually, 

at 160–250 K [11], water can bind more strongly to surfaces 

with defects, as was shown for rutile (TiO2 (110)) [12]. In 

these cases, H2O dissociates into an OH group, which fills the 

oxygen vacancy, and into a hydrogen atom, which binds to 

surface oxygen and forms a second OH group. These OH 

groups are stable for up to 490 K on TiO2 [13]. On a defect-

free surface oxides (e.g., a-Cr2O3 (001) [14], a-Fe2O3 (012) 

[15], and oxides of alkaline earth metals, including Ca3Ru2O7 

(001) [16]), water can be strongly bound if the end of the 

surface includes highly active cations. Then, it can easily 

dissociate. On the surfaces of RuO2 (110), PdO (101), and 

Fe3O4 (001), water binds coordinatively unsaturated cations 

and partially dissociated forms of the structure stabilized by 

hydrogen bonds [17-19]. High-enthalpy adsorption of low-

H2O powder materials (≥2 eV on monoclinic and ≈1.5 eV on 

tetragonal ZrO2) has been reported to decrease liquid–water 

binding (0.45 eV) at coverages of approximately 2–4 

H2O/nm2 [20][53]. In another study, Droshkevich et al [21]. 

reported on the chemo-electronic conversion of water 

adsorption energy into electricity on the surface of zirconium 

dioxide nanopowders that were synthesized at sizes of 7.5 

nm, when doped with 3 mol. %Y2O3.  

 However, despite numerous studies in this area, 

water adsorption on ZrO2 surfaces has not been studied in 

detail, and only a few reports on H2O adsorption can be found 

in the literature. In particular, H2O adsorption on well-defined 

monoclinic surfaces of zirconia (m-ZrO2 (101) and m-ZrO2 

(101) and its doped structures) has not been studied. For 

example, it is especially difficult to experimentally study pure 

ZrO2 single crystals grown from a melt; they exhibit phase 

transformations upon cooling; therefore, their doped 

structures (e.g., YSZ) are usually investigated. However, the 

surface chemistry of YSZ is more complex than pure ZrO2, 

as shown for CO and CO2 adsorption [22]. In another work, 

Kobayashi et al [23]. found that YSZ slowly decomposed at 

about 250 °C due to the t–m transformation. In a humid 

atmosphere, this t–m transformation is accompanied by 

microcracks and a loss in material strength. This discovery 

cooled the excitement caused by the discovery of PPT in 

zirconia-based ceramics.  
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This t–m transformation due to the presence of water or a 

humid environment in zirconia-based ceramic materials has 

been termed low-temperature degradation, or aging of ZrO2 

crystals. This topic has been researched extensively over the 

past couple of decades, including many hypotheses and 

discussions. The most reliable hypothesis about YSZ is based 

on filling oxygen vacancies present in the matrix to maintain 

a stable t-YSZ phase. Thus, the filling of these O vacancies 

with water radicals, either O2 or OH, destabilizes the t-YSZ 

phase. However, the YSZ stabilization mechanism has not 

been fully studied, and is still the subject of numerous 

discussions. Therefore, the theoretical study and modeling of 

water adsorption on these surfaces is necessary as a starting 

point for a good understanding of ongoing processes and 

phenomena from a fundamental point of view. On the other 

hand, aspects of the shift in the Fermi level after doping with 

yttrium oxide in ZrO2, as well as when it is under the 

influence of water adsorption, are still not clear due to the 

difficulty of their detection. For these reasons, to obtain 

detailed information on the process of the adsorption of water 

molecules onto ZrO2 and YSZ surfaces, as well as the effect 

of doping on their electronic and structural properties, we 

conducted quantum chemical calculations within the 

framework of density functional theory (DFT). 

II. MATERIALS AND RESEARCH METHODS 

 The choice of the adsorbed surface is very important 

for studying the interaction of water with the surface of solids, 

and in order to obtain accurate results, it is necessary to select 

a plate with the lowest density of surface broken bonds and 

electrostatic repulsion of neighboring layers, taking into 

account the thermodynamic stability of this surface. The 

higher the surface energy, the more thermodynamically 

unstable it is [24] and the more difficult it is to create an 

appropriate surface, namely, the surface energy is closely 

related to the number of atoms in the surface structure and the 

depth of the vacuum layer. In this work, in order to select the 

appropriate optimal surface for water adsorption and study its 

behavior on this surface, we determine the surface energy (σ) 

from the following equation: 

𝜎 =
1

2

[𝐸𝑠𝑙𝑎𝑏−(𝑁
𝑛⁄ )𝐸𝑏𝑢𝑙𝑘 ]

𝑆
,                                                    (1) 

where S is the total surface area of the plate; 𝐸𝑠𝑙𝑎𝑏  is the total 

plate energy; 𝐸𝑏𝑢𝑙𝑘  is the total energy of an optimized bulk 

structure; N and n represent the total numbers of atoms in the 

surface structure and unit cell, respectively; and 2 represents 

the two surfaces of the calculated structure in the direction of 

the z-axis. Crystalline slab surface models were built based 

on an extended 2 × 2 supercell with a large vacuum space of 

35 Å along the Z direction to minimize interactions between 

adjacent layers. Taking into account the accuracy and time of 

calculation, the lower layers of the surface slab were frozen, 

and the upper part was allowed to relax. Calculations were 

carried out based on density functional theory [25] using the 

Vienna Ab-initio Simulation Package (VASP 6.3.2) [26]. The 

total energy was determined using the exchange-correlation 

potential GGA. A 3 × 3 × 1 k-point grid using the Monkhorst-

Pack scheme was used to calculate a 2 × 2 slab. Then, each 

molecule in the gas phase was placed in a large box with 

dimensions 11 × 13 × 10 Å to avoid lateral interactions. 

Single H2O molecules were initially positioned at a height of 

2.5 Å above the selected surface, and different orientations 

were compared for each initial adsorption site, relaxing the 

H2O molecules along with the top layers of the slab (Figure 

1a, d). Four initial adsorption sites were tested for each 

molecule (on top of the Zr atom, above the outermost oxygen 

Ou (up), Od (down), and also centrally above the Zr position 

(Figure 1b). For the YSZ surface model, different initial sites 

were also tested adsorption sites: above the Zr atom, the 

outermost oxygen Ou (up), Od (down), in the position of the 

oxygen vacancy, above the yttrium atom and the center of the 

Ou-Od-Zr bonds (see Figure 1c) to find the most favorable 

adsorption sites, leading to stable configurations. 

Nonequivalent initial adsorption sites were not further 

studied. Oxygen vacancies were specified and taken into 

account by removing one O atom for each subsequent 

replacement of 2 Y3+ ions at the Zr4+ site. In this case, H (1s), 

O (2s, 2p), Zr (4d, 5s) and Y (4s 4p 4d 5s) were treated as valence 

electrons, while the remaining electrons remained frozen. The 

kinetic energy cutoff was fixed at 600 eV, and all calculations 

were carried out taking spin-polarized effects into account. 

 

Figure 1. Optimized structures of (a) t-ZrO2 (101) and 

with H2O molecule in a box with a vacuum of 35 Å, (b) 

possible sites for H2O adsorption on the surface of t-

ZrO2 (101), (c) initial sites of H2O adsorption on the 

surface t-YSZ (101) and (d) model of dissociative 

adsorption of water on t-ZrO2 (101). 

The energy of water adsorption (Eads) was determined by 

the following equation: 

𝐸𝑎𝑑𝑠 = 𝐸𝐻2О+𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − (𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝐸𝐻2О)                   (2) 

To take into account long-range uncoupled interactions, we 

considered Van der Waals effects as the difference between 

the calculated Van der Waals energy of a plate with adsorbed 

H2O molecules (𝐸𝐻2О /𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑣𝑑𝑊 ) and the sum of the calculated 

Van der Waals energies of the surface (𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑣𝑑𝑊 ) and H2О 

molecules (𝐸𝐻2О 
𝑣𝑑𝑊): 

𝐸𝑎𝑑𝑠 
𝑣𝑑𝑊 = 𝐸𝐻2О /𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑣𝑑𝑊 − (𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑣𝑑𝑊 +  𝐸𝐻2О 

𝑣𝑑𝑊                     (3)                                                            

where the interaction energy 𝑣𝑑𝑊 is taken into account by 

the Leonard–Jones potential. 

 

 

 

(a)

(b)

(c)

(d)
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III. RESULTS AND DISCUSSION 

At the first stage of modeling, geometric optimization 

of the monoclinic, tetragonal and cubic phases of ZrO2 was 

carried out using the VASP package. To get a good optimized 

structure, we applied the SCAN functionality, which is well 

recommended in this matter [27], to evaluate the exchange-

correlation effects in the system. The optimal k-dot numbers 

(4 × 4 × 4) and cutoff energy (ENCUT = 600 eV) were 

established after several rounds of convergence testing. 

According to the results obtained, the lattice parameters of the 

monoclinic phase of zirconium dioxide (a=5.115 Å, b=5.239 

Å c=5.304 Å; β=99.110◦) are in good agreement with 

experimental data [28]. Similar results were also obtained for 

the tetragonal (a=b =3.622 Å, c=5.275 Å; c/a=1.456 Å, 

dz=0.013) and cubic phase (a=b=c=5.12 Å), which are in 

fairly good agreement with experimental results of 

independent authors [29-32]. Figure 2 (a-c) compares the X-

ray diffraction peaks with literature counterparts, from which 

it can be seen that our results are in good agreement with the 

experimental data, with the exception of an imperceptible 

difference in the position of the X-ray peaks for the tetragonal 

system. 

 
Figure 2. Comparison of experimental and calculated 

(SCAN) X-ray diffraction patterns of m-ZrO2 (a), t-

ZrO2 (b), and c-ZrO2 (c). 

Based on these relaxed structures, we carried out 

calculations to study the electronic properties of c-ZrO2, t-

ZrO2, m-ZrO2. Figure 3 (a-c) shows the results of calculations 

of the density of states, which are crucial for the interpretation 

of the electronic properties of ZrO2, as well as the 

characteristics of devices based on them. To avoid 

underestimating the energy gap, we used the hybrid 

functional HSE06 [33]. 

 

Figure 3. Total density of electronic states for c-ZrO2 

(a), t-ZrO2 (b), and m-ZrO2 (c). 

According to Figure 3, the density of states of c-ZrO2 is 

slightly higher compared to other phases. It can be seen that 

among the studied modifications of zirconium dioxide, the 

tetragonal phase has the largest band gap. Changes in the 

energy gap value depending on the phase can be observed 

from the energy diagram shown in the Figure 4. 

 

Figure 4. Diagram of the Band Gap Depending on the 

Phase Modification of ZrO2. 

Using the position of the Fermi level (maximum of 

the valence band) for the monoclinic phase as a reporting 

point, we estimated the shift of the Fermi level during the 

phase transformation of ZrO2. According to the results, in the 

m-t region the Fermi level first shifts by 0.125 eV towards the 

valence band, and then in the t-c region it decreases by 0.08 

eV. 

Next, to select the optimal adsorbed surface, we 

created different surface models using well-reacted unit cells 

of monoclinic, tetragonal and cubic ZrO2 to correctly 

calculate the surface energy (σ) for slightly different surface 

models with different Mueller indices. The surface energy 

values for various ZrO2 slab models are calculated using 

formula 1 and are shown in Table 1. These steps were 

implemented based on the fact that choosing a slab with the 

lowest surface energy is an important task in order to 

correctly model the phenomena of water adsorption on the 

corresponding surface.       

Table 1. Calculated Values of Surface Energies (σ) for 

the Main Types of ZrO2 plate. 

Phase Miller Indices σ, 1019 eV/m2 

m-ZrO2 

-1 1.54 

-10 1.16 

-110 1.1 

-101 1.23 

-11 1.08 

-111 0.81 

t-ZrO2 

-1 0.98 

-10 0.95 

-101 0.78 

-100 1.01 

-111 0.79 

c-ZrO2 

-100 1.51 

-110 1.34 

-111 1.12 

 
 

 

 

(a)

(b)

(c)
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According to the results presented in Table 1, it can 

be seen that the most stable surfaces are those of the 

tetragonal and monoclinic phases, namely t-ZrO2 (101) and 

m-ZrO2 (111). Based on the results obtained, it can be 

assumed that the surface energy is somehow related to the 

size of the band gap, since with an increase in the band gap, 

the surface energy tends to decrease. That is, the results 

obtained demonstrate an inverse relationship between the 

surface energy and the results shown in the band gap diagram 

(Fig. 4). The results obtained are consistent with the work of 

Maliki et al [34], which reported that the most stable surface 

can be obtained from t-ZrO2 (101). As for comparing the 

results to experimental data, there are no reported data in the 

literature because the surface energies of solid metal oxides 

are difficult to measure experimentally. In total, 

measurements of the surface energies of some types of 

zirconium dioxide surfaces using multiphase balancing at 

high temperatures has been reported [35]. Based on the 

results obtained, we chose the t-ZrO2 (101) surface for this 

study, as the most stable surface for water molecule 

adsorption. After final surface preparation, single H2O 

molecules were initially positioned 2.5 Å above the selected 

surface with different orientations, which is larger than the 

bond distance between Zr and O (2.12 Å) in the solid state. 

The structures were then optimized by freezing the bottom 

layers of the wafer (Figure 5(a)). 

 

Figure 5. Configuration of water molecule adsorption on 

the surface of t-ZrO2 (101): (a) model of a lamellar t-

ZrO2 (101) cell with the initial configuration of water on 

its surface, (b) dissociative adsorption in a side view, (c) 

model of molecular physisorption of water on the surface 

of t-ZrO2 in a side view. 

 The optimized structure of the H2O/t-ZrO2 (101) system is 

shown in Figure 5 (b), from which it can be seen that the H2O 

molecule is dissociatively adsorbed with an energy of - 1.221 

Ev, even in the most favorable region (where the system has 

a minimum energy stable configuration). Dissociative 

adsorption of water on ZrO2 was also observed in the work of 

Korhonen et al. [36], where they experimentally and 

theoretically proved that water at low coverage dissociates on 

the surface of m-ZrO2, and our calculated adsorption energy 

on t-ZrO2 (101) for [H+OH]-ZrO2(101) is similar to that 

obtained by these authors results (Eads=1.20 eV) for (111) 

from the monoclinic phase. It was also found that at a given 

surface, water is adsorbed by molecular chemisorption, in 

which the oxygen of the water molecule coordinates the 

surface cation, and a small extension of one O–H water bond 

(1.13 Å) occurs in the form of hydrogen bonds of water with 

the surface oxygen ion (Figure 5 (c)). In this case, the 

adsorption energy is equal to 0.69 eV, and the distance 

between the oxygen of the water molecule and the zirconium 

atom of the surface is 2.205 Å. At the same time, the proton 

(H) in the water molecule and the oxygen from the surface of 

the slab form a hydrogen bond with a bond length of 1.01 Å. 

Next, to study the mechanism of water adsorption on the t-

YSZ surface, we replaced two Zr (from the topmost and 

subsurface O-Zr-O trilayers with Y, removing one oxygen 

from the third atomic layer (the next nearest neighbor of the 

Y atoms) to obtain a surface like t-YSZ (101). As the results 

showed, the water molecule is molecularly adsorbed and also 

dissociated on the surface of t-YSZ (101). Molecular 

adsorption of water at the most optimal configuration occurs 

with an energy of -1.84 eV, and the bond length of water from 

the surface t-YSZ (101) increases to 2.73 Å (Figure 6 (a)), 

while the O-H distance in water molecules remains 

unchanged. 

 

Figure 6. Molecular (a) and Dissociated Adsorption of 

Water to Form Surface Hydroxyls (b) in the H2O–YSZ 

(101) Model. 

Dissociative adsorption of water was accompanied 

by the movement of oxygen in the vacancy region of the plate, 

which leads to very strong adsorption with an energy of −1.23 

eV, blocking surface areas for oxygen activation. In both 

cases, H2O is adsorbed close to the yttrium atom (Figure 

6(b)). Unlike adsorption on t-ZrO2(101), water is more stably 

adsorbed on t-YSZ(101), since the adsorption energy of H2O-

YSZ(101) is more favorable than that of (H+OH)-YSZ(101). 

Comparative analysis of the electronic structure of the H2O-

ZrO2(101) and H2O-YSZ (101) systems indicates that the 

H2O interaction almost does not change the configuration of 

the electronic properties in the system (except for increasing 

the density state) when the system is modified with Y 

impurities (Figure 7). However, water molecules 

preferentially tend to adsorb molecularly on the t-YSZ(101) 

surface, whereas on t-ZrO2(101) it preferentially adsorbs 

dissociatively. Table 2 summarizes some of the main data 

obtained from the simulation of water adsorption on t-

ZrO2(101) and t-YSZ surfaces. 

 

 

 

2.73 Å 1.98 Å 1.08 Å1.07 Å
1.05 Å

1.68 Åa) b)
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Table 2. Adsorption Energies (Eads) and Geometric 

Characteristics of t-ZrO2(101) and t-YSZ (101) with 

Adsorbed Water 

 t-ZrO2(101) t- YSZ (101) 

Eads (H2O), eV - - 1.84 

Eads (H+OH), eV - 1.22 - 1.23 

Dist O(H2O)-surf, Å 2.08 2.73 

Dist O(H2O)-H1(H2O), Å 0.97 0.96 

Dist O(H2O)-H2(H2O), Å 1.13 0.97 

H-O-H  bond angle, (°) 111.3 105.54 

Doping with Y2O3 stabilizes t-ZrO2(101) and is accompanied 

by greater relaxation of O atoms. Calculations of the 

electronic properties of the H2O-ZrO2 (101) and H2O-YSZ 

(101) systems were carried out using the GGA functional, 

since the computing power of our computer was insufficient 

to implement the calculations with sewing functionality 

HSE06. However, the results of calculations using the GGA 

functional greatly underestimate the band gap of the system 

(3.24 eV for the H2O-ZrO2 (101) system and 3.21 eV for 

H2O-YSZ (101)). On the other hand, it was revealed that due 

to the presence of O-th vacancies, no new interband energy 

states are formed in the t-YSZ band diagram (Figure 7). 

 

Figure 7. GGA-Calculated Total Density of states for (a) 

t-ZrO2 (101) and (b) t-YSZ (101) Upon Interaction with 

Water Molecules. 

It is also important to take into account the hydrophilic nature 

of ZrO2 in such studies. Research shows that in addition to 

physically adsorbed water, there are terminal, bi-bridging and 

triple-bridging OH groups on the surface of the substrate, 

which are actively involved in the surface reaction [37-

50][51][52]. Surface hydroxyl groups and H2O adsorbed on 

the surface can partially block the active sites (lattice oxygen 

ions on the surface) of YSZ oxidation. The fully hydroxylated 

model t-YSZ (101) surface configuration is shown in Figure 

8(a). The results show that the OH groups form strong bonds 

from the slab surface. Figure 8 (b) shows the adsorption 

structure of a single water molecule on a fully hydroxylated 

YSZ surface. 

 

Figure 8. Relaxed Configurations: (a) Fully 

Hydroxylated t-YSZ (101), (b) Single Water Adsorptions 

on the fully Hydroxylated t-YSZ (101) Surface, and (c) 

Hydration Model of the t-YSZ (101) Surface. 

It can be seen that the repulsive forces of oxygen and 

hydrogen atoms in a water molecule and OH atoms on a 

completely hydroxylated surface do not prevent the H2O 

molecule from being adsorbed on t-YSZ (101). When water 

is adsorbed, two strong hydrogen bonds are formed on the 

hydroxylated surface, distances of 1.56 and 1.63 Å. In this 

case, water is adsorbed with an adsorption energy of 0.34 eV. 

The single water molecule adsorption model and other similar 

systems will help in the future to study in detail more complex 

models, including the multilayer hydration structure of the 

interface (Figure 8). Although this model requires a lot of 

computing power for DFT calculations, it can be assumed 

that in the layer closest to the surface (hydroxyl hydration 

layer), most water molecules can be adsorbed dissociatively. 

Further, through hydrogen bonding, H2O molecules will 

continue to be adsorbed and regularly located on the 

hydroxylated surface, forming primary and secondary 

hydration layers. The regularity of H2O molecules in the outer 

layer can be considered as a transition layer, and the hydration 

structure of the first three layers of H2O located near the 

surface can be considered as a group of water molecules that 

can be stably adsorbed and exist on the t-YSZ (101) surface. 

However, a detailed study of the full hydration model of the 

t-YSZ (101) surface remains the subject of our future studies. 

IV. CONCLUSIONS 

The processes of H2O adsorption on the surface of t-ZrO2 

(101) and t-YSZ (101) were studied using quantum chemical 

calculations. Calculations showed that H2O on unstabilized t-

ZrO2 (101) is adsorbed dissociatively with an energy of 1.22 

eV. Also on this surface, water is adsorbed by molecular 

chemшsorption with an energy of -0.69 eV and the formation 

of a hydrogen bond with a bond length of 1.01 Å. In the case 

of t-YSZ (101), water is molecularly adsorbed on the surface 

with an energy of -1.84 eV. Dissociative adsorption of water 

occurs with an energy of 1.23 eV near the yttrium atom. This 

research will help in the future to build a more accurate 

computational model for detailed studies of materials such as 

YSZ. 
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