Silver Nanoparticle Synthesis using Ocimum Santum

Vadiraj B Tangod, Namrata M

Abstract: Silver nanoparticles are synthesised using green nanotechnology and environmentally friendly chemicals, with Ocimum Santum (Krishna Tulasi) leaf extract serving as a reducing and capping agent. This technique enables us to eliminate the usage of harmful reducing reagents while maintaining eco-friendly, cost-effective, and capable large-scale production due to the plentiful supply of greener products. This would accelerate science and technology forward at an alarming rate in the production of agricultural and industrial products, superior and durable materials, novel therapies for chronic and hated diseases like cancer, and plenty of additional industrial applications. The stability of synthesised molecules is examined using several components, such as temperature, time, and aggregation. The characterization was further examined using UV-Visible Spectroscopy, Scanning Electron Microscopy, and Transmission Electron Microscopy.

Key words: SPR, AuNP’s, spectra, UV/Vis, SEM, TEM, nano

1. INTRODUCTION

Nanotechnology is the key to the technological growth of the twenty-first century, and its success will be reliant on ongoing creativity and the culmination of research efforts from engineering, the natural sciences [1, 2] [17][19], medicine, and associated fields. Nanotechnology and green nanotechnology have massive economic and societal influences. Green nanotechnology allows for the design and production of nanomaterials in an ecologically friendly manner.

Nanotechnology covers the design, fabrication and management of particle architectures with dimensions less than 100nm [1]. Nano technological revolution has major consequences for everyday life. Green nanotechnology is a fast-evolving, multifaceted knowledge base at the crossroads of physics, chemistry, engineering, and the biological sciences (plant and life sciences). Environmentally benign (“green”) nanotechnological processes are being developed to facilitate the design of new products that are made from eco-friendly materials, including plants, crops, and various photochemical and psychoconstructions, using processes that use less energy and generate less waste throughout the product life cycle.

Manuscript received on 26 April 2023 | Manuscript received on 14 January 2024 | Manuscript Accepted on 15 January 2024 | Manuscript published on 30 January 2024.

*Correspondence Author(s)

Dr. Vadiraj B Tangod*, Associate Professor and Head of Department of Physics, Government First Grade College for Women’s Opposite to R N Shetty Stadium Office, Dharwad-580008. Karnataka, India. E-mail: vadirajtangod@gmail.com

Dr. Namrata M, Assistant Professor and Head of Department of Fashion Technology, Government First Grade College for Women’s Opposite to R N Shetty Stadium Office, Dharwad-580008. Karnataka, India.

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)

© Copyright: All rights reserved.
Silver Nanoparticle Synthesis using Ocimum Santum

The use of plant extracts in the synthesis of silver nanoparticles has a significant advantage over manufactured compounds [8]. In comparison to other ways, the process of synthesising nanoparticles using plant extract is highly easy, time intensive, and cost-effective.

Due to their unique applications, the synthesis of silver nanoparticles has been considered an important area of research. Several studies have been published on the utilisation of natural resources such as plants, fungus, yeast, honey, and bacteria to synthesise silver nanoparticles. In addition, we hope to synthesise silver nanoparticles from the leaves of Ocimum Santum (Krishna Tulasi) [9]. Krishna Tulasi [9] (Figure 1) to heal various disorders precedes the oldest known history of a traditional medicine system. This plant [8] has been known to have anti-bacterial activity, anti-anaphylactic activity, anti-histaminic activity, wound healing effect, radio-protective effect, anti-diabetic effect, anti-oxidant activity, anti-carcinogenic properties, immunologic effects, contraceptive effect, and larvicidal effect due to a wide variety of phytochemical compounds (Figure 2), including eugenol, euginal, ursolic acid.

Figure 1: Ocimum Sanctum (Krishna Tulasi) (family Lamiaceae) was used for the Synthesis of Silver Nanoparticles. Tulasi Leaves Were Collected from the Botanical Garden, Karnatak University, Dharwad

Figure 2: Phytochemical Composition of Ocimum Sanctum (Krishna Tulasi)
II. ROLE OF GREEN TECHNOLOGY IN THE MODERN ERA

1. The synthesis of nanoparticles using green nanotechnology in chemistry is a thriving technology. This method allows us to eliminate the usage of harmful reduction reagents while also being eco-friendly, cost effective, and allowing for large-scale production due to the abundance of greener goods.

2. Green-synthesised nanoparticles have the same impact as chemically reduced nanoparticles in all applicable processes.

3. Green nanotechnology development would propel science and technology forward in the production of agricultural and industrial products, improved and durable materials, new drugs for chronic and dreaded diseases such as cancer, AIDS, and so on.

4. These technologies would also improve efficiency in harnessing solar and non-conventional energy sources, making the world less polluted and creating environmental safeguards for the future.

5. The use of this futuristic technology is inexpensive, environmentally benign, non-hazardous, and non-toxic.

III. EXPERIMENTAL

A. Materials:

Ocimum Sanctum (Krishna Tulasi) leaves were collected at the Botanical Garden, Karnataka University, Dharwad (Figure 1). AgNO₃ (silver nitrate) (analytical grade) is from Sigma Aldrich Chemicals. Distilled water is used for the synthesis, and all the washed glassware is dried in a hot air oven.

B. Preparation of Ocimum Sancturm Extract:

Leaves were gathered and rinsed many times with doubly deionized water for the manufacture of Ocimum Sanctum (Krishna Tulasi) extract. 20g of the dried leaves were chopped and combined with 200 ml of distilled water after drying at room temperature. For 60 minutes, the extraction was produced on a magnetic stirrer with a heater set to 1000 degrees Celsius. After cooling to room temperature, the solution was filtered (Whatman filter paper No. 1). And kept the extract at 40 degrees Celsius for further testing. This extract was obtained in order to create silver nanoparticles.

C. Synthesis of Silver Nanoparticles using Ocimum Sanctum (Krishna Tulasi) Leaf Extract:

When Krishna Tulasi leaf extract was applied to 20 ml of silver nitrate (AgNO₃) solution at room temperature, the colour changed to yellow after 5-6 minutes. And then it was stirred with a magnetic stirrer. With 8 hours of reaction time, it slowly decreases Ag⁺ ions to Ag⁰ ions. The resultant dark-coloured solution proved the full reduction of silver. The creation of silver nanoparticles is indicated by the brown colour of the solution. The phytochemicals (Figure 2) eugenol, euginal, urosolic acid, carvacrol, linalool, limatrol, caryophyllene, methyl caricol, sitosterol, and anthocyanins contained in Krishna Tulasi plant extract are responsible for reducing the silver salt into silver nanoparticles. Furthermore, UV-visible (UV-vis), transmission electron micrograph (TEM), and SEM instruments are used to characterise the synthesised silver nanoparticles.

D. UVVIS Spectrophotometer:

We employed a single beam Spectra Suite Ocean Optics Spectrophotometer (HR 400 high resolution model) to examine combined absorption and fluorescence studies [9].

E. SEM (Scanning Electron Microscopy) Measurements:

Scanning electron microscopy (SEM) (Model: JEOL JSM-6360) is a technique of electron microscopy that's capable of taking high-resolution photographs of a sample's surface.

IV. RESULTS AND DISCUSSION

UV/Vis spectroscopy has been successfully used to examine the development and stability of metal nanoparticles in aqueous solutions. Silver colloida's absorption band is 400–410 nm, with a high peak at 408nm attributed to the SPR, which is generated by an interacting electromagnetic field [10–14] [18]. The silver nanoparticles are spherical, according to SPR (Figure 4). Further, characterization of silver nanoparticles is done through SEM and TEM images (Figure 3).
Silver Nanoparticle Synthesis using Ocimum Santum

Figure 4: Surface Plasmon Resonance (SPR) of Silver Nanoparticles Synthesized by Ocimum Sanctum (Krishna Tulasi)

Phytochemicals found in Ocimum Sanctum (Krishna Tulasi) leaves include ursolic acid, rosmarinic acid, oleic acid, peganin, orientin, apigenin, luteolin, moludistin, carvacol, eugenol, and caryophyllene. Zn, Mn, and Na can also be present as trace elements. The extract's water-soluble components are responsible for metal ion reduction and nanoparticle stability.

A. Role of Phytochemicals as a Reducing and Stabilizing Agent:

It is critical to note that numerous herbs, spices, and plant sources contain powerful antioxidants that function as phytochemical elements in their seeds, stems, fruits, and leaves. These naturally occurring antioxidants are already present in the human food chain and have been shown for thousands of years to be non-toxic to living individuals and the environment. The use of plant-based phytochemicals in the overall synthesis and building of nanoparticles, as well as numerous nanoparticle-enhanced products, is particularly appealing since it represents an essential symbiotic relationship between natural and plant sciences and nanotechnology. This link between plant sciences and nanotechnology enables a naturally green approach to nanotechnology known as green nanotechnology. Professor Kattesh Katti, the father of green nanotechnology, has revealed the use of phytochemicals found in Soya and Tea as dual reducing and stabilising agents in the production of gold nanoparticles with Cumin [2–8]. We present here the use of phytochemicals found in Krishna Tulasi (Ocimum Sanctum) as reducing agents for the conversion of silver salts to silver nanoparticles. Krishna Tulasi phytochemical elements include eugenol, euginal, urosolic acid, carvacol, linalool, limatrol, caryophyllene, methyl caricol, sitosterol, and anthocyanins. The phytochemicals in both of these plants comprise volatile oils, lipids, a variety of alcohols, and aldehydes. Aroma rings are found in almost all phytochemicals. The chemical role of various phytochemicals in Krishna Tulasi responsible for AgNP synthesis is yet unknown, however, we believe that water-soluble elements in Krishna Tulasi may play an integral part in the complete reduction process of AgNO3.

B. Effect of Temperature on SPR of Green AgNP's:

The influence of temperature on the SPR of silver nanoparticles synthesised by Ocimum Sanctum extract was investigated. The absorption spectra of silver nanoparticles were measured at four distinct temperatures (300, 400, 500, and 600 degrees Celsius). Figure 5 depicts the SPR spectra of silver nanoparticles. As the temperature rises, the SPR peak shifts slightly to the higher wavelength side, resulting in a redshift. The absorption peak may also be widening. The explanation underlying the redshift is that as the particle's temperature rises, the volume of the nanoparticle expands and the density of free electrons falls. The reduced electron density results in a lower plasma frequency of the electrons and, as a result, a red shift of the SPR. The absorbance of silver nanoparticles decreases as the temperature rises [1].

Figure 5: Absorption Spectrum (SPR) of Silver Nanoparticles Synthesized by Ocimum Sanctum (Krishna Tulasi) Leaves Extract at Various Temperatures

C. Effect of Sodium Chloride on SPR of Green AgNP's:

To check whether nanoparticles of silver are formed or not, it can be done in the reverse manner, that is, by promoting silver nanoparticle aggregation. To promote the aggregation of silver nanoparticles and compare their activity, a NaCl chemical solution was created [8-14]. It was discovered that increasing the NaCl content of the added solution to the colloidal nanoparticle solution resulted in a decrease in absorption intensity at the surface plasmon resonance as well as an increase in the absorption band in the long wavelength region (red shift) [9–16]. This is an indication (Figure 6) of the formation of a fractal medium in which nanoparticles adhere to one another in enormous clusters. Many earlier research publications have been published to highlight the optical activity of fractal media, particularly their capacity to aggregate.
The aqueous extract of Krishna Tulasi leaves has a significant potential for high-yield AgNP’s production. The conversion of silver ions to AgNPs takes only one minute in these procedures. The procedure is environmentally friendly since no harmful reducing ingredient was utilised, and synthesised AgNPs can be used for therapeutic uses.

DECLARATION STATEMENT

<table>
<thead>
<tr>
<th>Funding</th>
<th>No. I did not receive.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicts of Interest</td>
<td>No conflicts of interest to the best of our knowledge.</td>
</tr>
<tr>
<td>Ethical Approval and Consent</td>
<td>No, the article does not require ethical approval and consent to participate with evidence.</td>
</tr>
<tr>
<td>Availability of Data and Data Access Statement</td>
<td>Not relevant.</td>
</tr>
<tr>
<td>Authors Contributions</td>
<td>All authors have equal participation in this article.</td>
</tr>
</tbody>
</table>

REFERENCES

Silver Nanoparticle Synthesis using Ocimum Santum

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)/ journal and/or the editor(s). The Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.