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Abstract: This study investigates the evaluation of 

multivariate time series data using a Generative Adversarial 

Network (GAN). Calculating the Value at Risk (VaR) for the 

Euro Overnight Index Average (EONIA) over different time 

periods and evaluating the financial risk consequences of the 

EONIA to Euro Short-Term Rate (ESTER) transition are the 

main objectives. Through the use of a particular GAN called 

TimeGAN, which focuses on macro-finance temporal and latent 

representation, the study aims to predict short-rate risk for 

EONIA. When estimating lower VaR and the 1-day higher VaR 

for EONIA, the TimeGAN model performs poorly. However, it 

performs well when estimating upper VaR for 10-day and 20-day 

periods. The variation of TimeGAN with PLS+FM, which uses 

Positive Label Smoothing and Feature Matching shows the upper 

and lower VaR for EONIA over 10 and 20-day periods are 

excellently estimated by this enhanced model. Simulations for the 

20-day EONIA show less variation between TimeGAN variations 

than a one-factor Vasicek model, even with the proper VaR 

estimations. This study evaluates the proposed transition mapping 

from ESTER to EONIA by the European Central Bank (ECB), 

calculating an ESTER+8.5bps shift with the TimeGAN with 

PLS+FM. The results do not refute the validity of the ECB's 

proposed EONIA-ESTER mapping. Additionally, the TimeGAN 

with PLS+FM accurately predicts VaR for 10 and 20-day periods 

for ESTER using the EONIA-ESTER mapping. Whereas the one-

factor Vasicek model finds it difficult to estimate higher VaR for 

ESTER over the same time frames. 

Keywords: Euro Overnight Index Average, Euro Short-Term 

Rate, Generative Adversarial Network, Multivariate Time Series, 

Value at Risk 

I. INTRODUCTİON

The short rate is significant in finance, especially when

it comes to interest rate swaps within the multi-curve 

framework, such as Overnight Index Swaps (OIS). Interest 

rate derivatives make up more than 70% of the entire 

notional value of derivatives, according to the ESMA 

Annual Statistical Report. Consequently, a significant 

portion of the derivatives market places importance on the 

Euro Overnight Index Average (EONIA)-Euro Short Term 

Rate (ESTER) change; since risk models were initially 

adjusted using EONIA behavior.  
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By 2020, the underlying short rate for contracts 

denominated in EURO would have been the EONIA. On 

January 3rd, 2022, the ESTER come into full use, marking a 

change from EONIA's methodology. Therefore, due to the 

differences in building methodologies, the differences in 

these rates after the EONIA-ESTER switchover were 

required to be predicted. ESTER measurements were 

collected during the pre-ESTER period, which ran from 

March 15, 2017, to September 30, 2019, in order to 

investigate these variations. Based on the analysis of the 

pre-ESTER period, the European Central Bank (ECB) 

concluded that the ESTER to EONIA mapping was 

ESTER+8.5bps. Applying the ECB's suggested mapping 

could lead to inaccurate risk estimates from existing risk 

models. Because of the short deployment duration of 

ESTER, traditional methods for calculating the risk 

indicator, Value at Risk (VaR), may exhibit biases and 

instability. Therefore, the TimeGAN model, a method 

without specialized models that was developed by [1] is the 

subject of this study. This model permits both the 

assessment of the ECB's proposed EONIA-ESTER mapping 

and short-term forecasting. In order to determine the risk 

involved in moving from EONIA to ESTER and evaluate 

the efficacy of the TimeGAN model in forecasting short-

term risk, I created the following questions: 

1. Is it possible for the TimeGAN model to predict

interest rate risk better than other well-known

financial short-rate models and conventional

simulation techniques when it comes to short rates?

2. Does the ECB's suggested EONIA-ESTER mapping

offer precise estimates of the risk associated with

EONIA interest rates following the introduction of

ESTER?

The paper is as follows Section 2 provides a thorough 

analysis of GAN and the TimeGAN model. After that, 

Section 3 delves into an exploration of existing literature on 

short-rate modelling and associated risk models. Next, 

Section 4 describes the data, model, and evaluation metrics 

that were used and looks into fundamental qualities that 

have been proposed before as well as those that have not. 

The experimental analysis used is developed in Section 5. 

Lastly, a thorough discussion of the findings and their 

ramifications is covered in Section 6. Whereas, Section 

discusses the thoughts of the study. Section 8 concludes this 

study by providing a summary and suggesting some 

directions for further research. 
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II. BACKGROUND: REGULAR GAN VS TİMEGAN 

The investigation applies a two-model system 

simultaneously trained in adversarial objectives and 

explores GANs in the setting of short rates EONIA and 

ESTER together with risk indicators. The generator, the 

initial model, seeks to generate data that is identical to real 

data. This generator uses a stochastic Wiener process to 

generate data through the use of a Recurrent Neural 

Network [2–9][33]. The discriminator, the second model, is 

a RNN designed to distinguish between authentic and 

fraudulent input. The binary cross-entropy loss function is 

essentially what the GAN architecture is designed to 

minimize. It assesses how well the discriminator can 

accurately identify samples of created and real data. The 

discriminator wants to maximize this loss, whereas the 

generator wants to minimize it. Through mutual training, the 

generator can improve its output and successfully fool the 

discriminator. Even though the standard GAN model works 

well, [1] suggest the Time Series GAN (TimeGAN). In 

order to develop low-dimensional representations of actual 

data sequences of length that are separate from the 

discriminator's classification, this improved model adds an 

intermediate embedding space. The GAN and the 

Autoencoder are the two main components of TimeGAN's 

architecture. The Autoencoder uses a RNN as the embedder 

to translate real-time series data to a low-dimensional 

embedding space. The recovery model then reverses this 

mapping, returning to the original data space from the low-

dimensional embedding space. Instead of mapping random 

variables directly to the data space, the GAN portion of 

TimeGAN concentrates on the generator's capacity to map 

random variables to the low-dimensional embedding space. 

The model's ability to learn representations is enhanced by 

this indirect simulation process, which helps it recognize 

patterns in the low-dimensional manifold of short rates. The 

discriminator in TimeGAN works in the embedding space 

and aims to distinguish between produced and real data 

samples in this altered domain. In order to guarantee that 

temporal links are maintained in the generated data 

throughout time, a supervisor network is trained on the 

embedding space simultaneously. Because the generator and 

discriminator must be trained simultaneously in order to 

reach a Nash equilibrium in a non-cooperative game, 

TimeGAN optimization is difficult. The Wasserstein GAN 

(WGAN) and its Gradient Penalty (WGAN-GP) variation, 

as well as label smoothing and feature matching approaches, 

are presented to improve optimization. Smoother 

optimization is made possible by WGAN and WGAN-GP, 

which work to enhance the loss function and allay worries 

about gradient saturation. Feature matching adds mean, 

variance, skewness, and kurtosis as matching statistics to 

ensure that the statistics of generated data are more closely 

aligned with those of real data. Lastly, mode collapse—

which happens when the generator produces a single 

sample—is reduced by label smoothing, which modifies the 

discriminator's output labels. TimeGAN's ability to learn, 

generate, and iterate more successfully across low-

dimensional embeddings is made possible by this 

multimodal optimization strategy, which also improves 

TimeGAN's understanding and simulation of short-rate 

hazards. 

III. RELATED WORKS 

Unlike stocks, interest rates have a limit; a rise in rates 

could have unintended negative effects on the economy. An 

Ornstein-Uhlenbeck stochastic process is used by [10] to 

capture mean reversion of interest rates. [11] include a no-

arbitrage limitation in the yield curve, whereas [12] include 

a non-negativity condition in their extensions. In 1992, [13] 

recognized that assuming a single source of market risk was 

insufficient for effective risk modeling. Therefore, they 

proposed a two-factor model with a stochastic mean 

component. [14] question the idea that unobservable latent 

forces solely drive short-rate evolution and suggest 

including macroeconomic variables in short-rate models. 

[15][31][32] draw the conclusion that macroeconomic 

factors primarily affect the short end of the yield curve and 

suggest using the [16] rule to incorporate inflation and 

economic growth. In order to create a connection between 

macroeconomics and market microstructure, [17] show how 

trading activity, liquidity, and scheduled macroeconomic 

announcements relate to one another. [18] claim that short-

term bond liquidity is the first to react to changes in 

monetary policy, having a significant impact on short rates. 

[19] claim that during times of market stress, liquidity drives 

interest rates in the Eurozone, but credit quality has a 

stronger ability to explain cross-sectional fluctuations in 

short rates. Credit risk premia and liquidity are positively 

correlated, according to [20], suggesting that modeling 

liquidity automatically accounts for any exorbitant credit 

risk premia. They measure liquidity as the bid-ask spread on 

short-term Euribor tenors using specific formulas derived 

from panel bank quotations. Table 1 provides a cursory 

overview of the data that are currently available; a more 

thorough analysis is slated for Section 4. 

Table 1. Illustrates the Short Rate And Its Associated Risk 

Factors 

Short rate 
Macroeconomic risk 

factors 

Market 

microstructure risk 

factors 

ESTER Inflation Liquidity Euribor 

EONIA Output gap Liquidity ESTER 

IV. EMPİRİCAL STUDY 

A. Data 

As of this writing, the EONIA dataset spans the dates 

January 4, 1999, to March 12, 2020. The pre-ESTER data 

spans the period from September 30, 2019, to March 15, 

2017. In contrast, the ESTER dataset spans the period from 

October 1, 2019, to March 12, 2020. The data is notable for 

having a large amount of noise in it. A further examination 

reveals outliers that are the result of improper inputs. 

Notwithstanding these anomalies, the data unmistakably 

show the spread's illiquidity during the Great Financial 

Crisis (GFC) and its subsequent decline, though it did not 

completely recover after the GFC.  
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I suggest that EONIA and ESTER differ from one 

another in ways that extend beyond the first two statistical 

moments. Therefore, to effectively reflect these 

distributional disparities, a nonlinear, model-free simulation 

technique becomes essential. I base the comparison of 

EONIA and ESTER on industry-standard stylized 

information as well as some of our own. 

B. Model Analysis 

However, in this study I include market microstructure 

risk variables, macroeconomic risk factors after 2000, and 

mean reversion components prior to 2000 into a single 

model. The fundamental process in this model is replicated 

by the explanatory factors and the short rate within a time T. 

Two efficient methods for producing non-linear images 

include the Generative Adversarial Network (GAN) created 

by [21] and its extension for multivariate time series, the 

TimeGAN model by [1]. Risk modeling for the short rate is 

made simpler by the TimeGAN model, which enables the 

simulation of future scenarios without the requirement for a 

specialized model. Therefore, there are three main parts to 

this study:  

1. Autoencoder Model: [22] initially developed the 

Autoencoder model, which is used to initiate non-

linear dimension reduction. This decline is in line with 

the theory that a limited set of risk variables drive the 

short rate's underlying mechanism. I will discuss the 

state-of-the-art in autoencoder technology at the 

moment and explain our choice of network 

architecture. The curse of dimensionality, which 

typically causes problems in forecasting applications, 

is lessened by this dimension reduction. 

2. GAN Model: I utilize the GAN to simulate the 

Autoencoder's low-dimensional representation without 

the need for a model. Implicit probability 

maximization is possible in this GAN-driven 

simulation, and it doesn't need an underlying 

distribution. Section 3 delves more into the network 

architecture and state-of-the-art. 

3. Long Short-Term Memory (LSTM): The last stage is 

to synchronize the low-dimensional representation of 

the real data with the temporal dynamics of both 

simulations from the GAN model. Similar to a non-

linear version of the Vector AutoRegression (VAR) 

model. [23] propose the LSTM network design to 

capture these temporal changes. In order to forecast the 

low-dimensional representation of simulations, the 

LSTM model is trained using the low-dimensional 

representation of real data. Any differences between 

the simulations and the predictions show where the 

temporal dynamics are flawed. 

C. Evaluation Metrics 

The propensity for negative returns is measured by 

skewness (S). A higher likelihood of negative returns is 

indicated by lower skewness, and vice versa. Concentration 

is calculated using kurtosis (K), where bigger values denote 

fatter tails in the return distribution. Mean reversion is 

measured using the Hurst exponent (H), which denotes time 

series persistence or long-term memory. A higher regression 

to the mean is indicated by higher Hurst values. The 

possibility of non-stationarity in the time series is indicated 

by stationarity (A), which is evaluated using the Augmented 

Dickey-Fuller (ADF) test. I also give three additional 

stylized facts in addition to these widely recognized ones. I 

are able to evaluate the strength of different time series 

components thanks to [24]'s Season and Trend 

decomposition using LOESS (STL). Higher values indicate 

stronger correlations. It computes the Strength of Trend (FT) 

and the Strength of Seasonality (FS). The spikiness (SP) of 

daily returns, according to [25], is a measure of distribution 

spikes; a higher number indicates a spikier distribution. 

Table 2 displays those stylized facts for ESTER, the ECB's 

mapping, pre-ESTER, EONIA, and EONIA during the pre-

ESTER period. Compared to the ECB's suggested mapping, 

pre-ESTER returns in particular exhibited stronger 

skewness, higher kurtosis, and lower variance. This 

indicates that while the ECB mapping is more closely 

matched with a normal distribution, pre-ESTER has a 

greater tendency to yield positive returns. There hasn't been 

any significant shift in mean reversion, according to the 

comparatively stable Hurst exponent. Furthermore, pre-

ESTER returns are non-stationary compared to the ECB's 

proposed mapping. Moreover, pre-ESTER had lower 

Spikiness ratings and greater FS scores than the ECB's 

intended mapping. 

Table 2. The Economist's Proposed Mapping of eSTER = EONIA - 8.5bps, as well as the Stylized Statistics for Daily Returns in 

EONIA, pre-eSTER, EONIA Throughout the pre-eSTER Period, and eSTER 

Short rate N V S K H A FT FS SP 

EONIA 5425 0.530 22.49 2013.73 0.001 0.0 0.89 0.968 6.53 e-10 

EONIA (pre-eSTER) 648 9.0 e-4 4.13 104.71 -0.025 0.0 0.00 0.336 3.86 e-11 
Pre eSTER 648 1.5 e-4 9.23 167.09 -0.028 0.93 0.00 0.109 8.59 e-12 

ECB mapping 648 5.8 e-4 3.29 95.72 -0.025 0.0 0.00 0.241 8.62 e-11 

ESTER 114 9.0 e-5 0.25 22.37 -0.220 0.0 0.00 0.117 1.36 e-11 

V. EXPERİMENTAL ANALYSİS 

As shown in Fig. 1, I first divided the EONIA and 

EONIA risk factors into train, validation, and test datasets. I 

next use the training dataset to choose models for the 

Embedder, Recovery, and Supervisor networks. On the 

validation and test datasets, T-VaR estimations for EONIA 

and the variety of EONIA simulations are evaluated, taking 

into account different T values like 1, 10, and 20. I carry out 

the same process with a variance covariance model and a 1-

factor Vasicek model to create a baseline for comparison. 

 

Fig. 1: Train-Validation-Test Split for EONIA and EONIA 

Risk Factors 
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In order to evaluate the T-VaR estimates, I use the 

TimeGAN models for EONIA and its risk components to 

create 10,000 simulations for T trading days, from which I 

calculate the T-VaR for EONIA. This procedure is repeated 

in the test and validation datasets for  250 trading days, and 

it is backtested using [26] Basel Committee Coverage Test. 

The train and validation datasets are combined to calibrate 

the TimeGAN models. In particular, I calibrate the Vasicek 

and Variance-Covariance models on the 250 trading days 

prior in both the test and validation datasets simultaneously. 

According to [27], one way to keep an eye out for 

overfitting and mode collapse is to compare the produced 

samples' Nearest Neighbors (NN) to the actual EONIA data. 

In a quantitative assessment, the diversity of TimeGAN 

simulations is quantified by the number of unique NNs 

(designated as DNN) for real EONIA data among 250 

simulations. Furthermore, in order to qualitatively evaluate 

variety, I perform a dimension reduction on 20-day 

simulations of latent variables using t-distributed Stochastic 

Neighbor Embedding (t-SNE). After that, I compute 20-day 

simulations while suppressing the influence of other latent 

factors to investigate logical interpretations, and then I 

examine the effect of latent variables on EONIA simulations 

using the best-performing TimeGAN model. I assess the 

ECB's suggested EONIA-ESTER mapping, continuing with 

the top-performing TimeGAN model calibrated on EONIA. 

In order to validate the ECB's mapping, the TimeGAN 

model's discriminator is applied to 20 trading days of the 

pre-ESTER+8.5bps and EONIA risk variables' latent space. 

The realness score predictions made by the discriminator for 

every pre-ESTER trading day are averaged in order to 

evaluate how well they match the stylized facts found in 

Table 2. In addition, I use an XGboost regression decision 

tree to examine the independent variable importance for the 

realness score. Lastly, I  use a coverage test to assess the 

capacity to predict T-VaR for ESTER during the pre-

ESTER period using an EONIA-calibrated TimeGAN 

model. 

VI. RESULT ANALYSİS  

A. Model Selection 

Using the EONIA training dataset, a 5-fold cross-

validation is used to optimize the hyperparameters. To find 

the ideal autoencoder configuration, we've trained a variety 

of autoencoder architectures with different dropout 

regularization parameters, layer counts, and latent space 

dimensions. Fig. 2(a) displays the average recovery loss for 

several network designs in the hypothesis space with a 0.1 

dropout. Interestingly, even with a somewhat smaller latent 

space dimension, the combination of a 1-layer Embedder, 1-

layer Recovery, and four latent variables shows a minimum 

recovery loss. I examine the mean recovery loss for different 

Embedder and Recovery layers, conditioned on four latent 

variables and a dropout of 0.1, in Fig. 2(b). The 

configuration with the lowest recovery loss in this case is 

the 1-layer Embedder and 1-layer Recovery setup. As a 

result, I use four latent variables and a 1-layer LSTM for the 

Embedder and Recovery networks, with a dropout 

regularization of 0.1. 

 
(a)                                                                                     (b) 

Fig. 2: Recovery Loss for Different Number of Layers with Dimension and Recovery 

Examining the latent variable values in the training 

dataset at random for the optimum autoencoder (Fig. 3), we 

see that these variables move independently. According to 

our theory, every latent variable in the training set reflects 

unique, imperceptible traits. I have experimented with 

different dropout regularization parameters and layer 

numbers in Supervisor designs, taking into account the 

latent space representation that I have learned. The mean 

supervisor loss for several designs fitted with the training 

data is shown in Fig. 4. Interestingly, the least supervisor 

loss is seen when a 1-layer Supervisor is combined with a 

0.2 dropout regularization. Taking into account the 

Generator and Discriminator parts, I have set up the 

Generator to have more capacity than the Discriminator 

through the use of layered LSTM layers. A bidirectional 

LSTM is used in the Discriminator design, which provides 

more flexibility because the classification does not strictly 

follow regular temporal dynamics.  

 

Fig. 3: Values for Latent Variables in the Training Dataset, 

Which Includes EONIA, that were Discovered Over Time by 

the Optimum Autoencoder 
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Fig. 4: Supervisor Loss Conditioned on Optimal Autoencoder 

for Varying Dropout Regularization Parameters and Layer 

Counts 

B. Coverage Test TimeGAN 

First, I use the validation dataset to run the Coverage 

test. Furthermore, I include in our analysis a TimeGAN 

variant called TimeGAN with PLS+FM, which combines 

Positive Label Smoothing and Feature Matching. The T-

VaR exceedances for each TimeGAN and baseline model on 

the validation dataset are broken down in Table 3. Based on 

the acceptability range, I assess the VaR estimations. The 

count of exceedances is assumed to follow a binomial 

distribution with a central limit of 𝑝 =  1 −  𝑞 𝑓𝑜𝑟 𝑉𝑎𝑅𝑞. I 

expect about 2.5 exceedances, as the TimeGAN models 

estimate VaR over 250 trading days. Based on observations, 

the traditional TimeGAN produces VaR estimates that are 

either above or below the acceptable range. The TimeGAN 

model with Feature Matching loss, which is one of the 

recommended TimeGAN models discussed in Section 4, 

exhibits the greatest gain in 1-day VaR predictions. These 

forecasts are still overly optimistic, though. Positive Label 

Smoothing in conjunction with Feature Matching seems to 

mitigate the issue of overly optimistic 1-day VaR estimates. 

Comparatively, the Variance-Covariance model produces 

unduly aggressive VaR estimates for all T-values, but the 1-

factor Vasicek model produces VaR estimates that are 

within the acceptable range for almost all T-values. 

Table 3: The Count of T-VaR Exceedances in 250 EONIA 

Trading Days for both TimeGAN and Baseline Models 

Between October 6, 2017, and September 28, 2018 

  Number of exceedances 

Metric Method T (upper) T (lower) 

  1 10 20 1 10 20 

 TimeGAN 15 9 6 121 17 9 
With the 

Wasserstein 

Gradient Penalty 

80 27 9 121 3 1 

Coverage 

Test 

With Positive 

Label Smoothing 

29 9 2 164 238 247 

 With Feature 
Matching 

20 3 5 22 1 1 

With PLS+FM 12 9 2 20 5 9 

Vasicek 6 10 9 2 2 1 

 Variance-

Covariance 

12 20 73 9 12 15 

The interesting thing is that the TimeGAN model's 

performance improves as T increases. The training goal of 

the model, which is to create 20-day simulations for EONIA 

and EONIA risk factors, provides an explanation for this 

pattern. The LSTM model uses time-based backpropagation 

to address the vanishing gradient problem. However, 

gradient backpropagation becomes more difficult with 

longer sequences. Therefore, the 1-day VaR estimates 

perform worse than the 20-day VaR estimates for all 

TimeGAN models. For the sake of illustration, T-VaR 

produced by TimeGAN on arbitrary trade days in the 

validation dataset are shown in Fig. 5. 

 

Fig. 5: T-VaR for Baseline Models and TimeGAN 

When compared to the Vasicek and Variance-

Covariance models, the 1-day VaR estimates are clearly 

more aggressive. Upon closer inspection, the Variance-

Covariance model's T-VaR estimates are unstable, so I 

decide not to include the Variance-Covariance model in the 

following analyses. To provide more context, Fig. 6 show 

examples of T-VaR9 produced by TimeGAN with PLS+FM 

on random trading days in the validation dataset. These T-

VaR estimates differ from the regular TimeGAN T-VaR 

estimates, indicating a propensity towards aggressive 1-day 

VaR estimations. 

 

Fig. 6: T-VaR for Time GAN PLS+FM and Baseline Models 

The training dynamics of a GAN introduce diversity in 

VaR estimations across iterations, underlining the necessity 

to focus on the ideal training iteration. Visualizing the 1-day 

and 20-day VaR estimates for TimeGAN with PLS+FM 

conditioned on the most favorable training iterations in Fig. 

7 over the validation and test periods reveals several 

insights. Notably, when T increases, there is an expansion in 

the absolute difference between upper and lower T-VaR, 

accompanied by a shift in the mean. Additionally, a 

comparable depiction for the other TimeGAN models 

demonstrates. 

 

Fig. 7: 1-day and 20-day VaR for Time GAN with PLS+FM 
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C. Diversity of TimeGAN Simulations 

Table 4 displays DNN for each of the TimeGAN models 

across 250 simulations in the EONIA test data set. DNN is 

included in the Vasicek simulations for baseline 

comparison. In comparison to the Vasicek model, I find that 

DNN is lower for all T and all TimeGAN models. 

Stochasticity is incorporated into each time step of the 

Vasicek model's Euler discretization simulation. While the 

Generator network makes sure that temporal links are 

maintained and that latent representations match latent 

representations in the data, the TimeGAN model takes 

stochasticity into account in w1:T. Because of this, the 1-

factor Vasicek model generates more NNs than any other 

TimeGAN model. 

Table 4: The Quantity of Varied Closest Neighbors in the EONIA data for 250 TimeGAN and Time GAN Simulations 

  DNN for T 

Metric Method 1 10 20 

 

TimeGAN 4 4 4 

TimeGAN with the Wasserstein 

Gradient Penalty 
2 8 9 

Diiversity 
TimeGAN with Positive Label 

Smoothing 
3 3 2 

 

TimeGAN with Feature Matching 12 15 11 

TimeGAN with PLS+FM 12 7 6 

Vasicek 44 121 145 

Four nearest neighbors are shown for the TimeGAN with 

PLS+FM model in Fig. 8 and for the normal TimeGAN in 

Fig. 9. The two models demonstrate their capacity to 

produce various EONIA short rate routes. This shows that as 

the model goes through more training steps, the diversity of 

EONIA short rate pathways increases. Reducing the 

dimensionality in R2, Fig. 101 displays the t-SNE 

projections that represent the 20-day simulations of four 

latent variables produced by Gθg(w1:T) and real data 

embeddings, Eθe(x1:T). The graphic highlights certain 

commonalities between the two datasets by showing a 

partial overlap in the low-dimensional manifolds of the 

simulated and real data. 

 

Fig. 8: Four Nearest Neighbours in EONIA Test Data Set for Time GAN 

 

Fig. 9: Four Nearest Neighbours in EONIA Test Data Set for Time GAN with PLS+FM 

 

Fig. 10: t-SNE for Real EONIA Data and Fake EONIA Data Simulated by TimeGAN with PLS+FM 
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D. Evaluation ECB Proposed EONIA-ESTER Mapping 

The behavior of ESTER and its corresponding realness score during the pre-ESTER period are shown in Fig. 11. The 

Discriminator in TimeGAN with PLS+FM is used to calculate the realness score for the ECB's planned EONIA-ESTER 

mapping. Throughout the whole pre-ESTER period, observations demonstrate that ESTER is primarily classified as real, 

with a few notable exceptions in April–July 2017 and March–May 2018, when the Discriminator expresses doubt about the 

veracity of the ESTER data. Notably, this study can not clearly identify any one period as false. 

 

Fig. 11: Realness Score eSTER During Pre-eSTER Period Based on TimeGAN with PLS+FM Discriminator 

Now let's look at Fig. 12, which shows the correlation 

matrix between the pre-ESTER realness score and the 

stylized facts of ESTER. It is difficult to determine which 

stylized information primarily accounts for the realness 

score because the analysis does not show any significant 

connections between the stylized facts and the realness 

score. 

 

Fig. 12: Correlation Matrix Stylized Facts of ESTER and 

ESTER Realness Score 

The importance of independent variables in predicting 

the reality of ESTER in the pre-ESTER period is seen in 

Fig. 13. Interestingly, the biggest element influencing the 

realness score turns out to be inflation. It's interesting to 

observe, though, that real GDP growth is comparatively less 

significant, perhaps because the 20-day simulations using 

this relatively static variable only collected a limited amount 

of data. A more refined real GDP growth signal—such as 

one obtained from Kalman filtering—is proposed to provide 

a feature importance that is higher. 

 

Fig. 13: Independent Variable Importance in Ester 

Realness Score During pre-ESTER Period 

VII. DİSCUSSİON  

Due to computing complexity, I were only able to 

perform manual searches because I did not have access to 

structured optimization techniques like grid or random 

searches. Random searches across high-dimensional 

hyperparameter spaces yield better optimization results than 

grid searches, but at the expense of increased processing 

cost. On the other hand, grid and random searches provide 

quicker computation speeds because of parallelism, whereas 

Bayesian optimization, as explained by [28], increases 

model performance in fewer evaluations by reasoning about 

performance in the hyperparameter space prior to 

exploration. Inadequate hyperparameter settings may have 

affected our investigation's results because I lacked a 

systematic optimization technique. Disentangling the latent 

space produced by the Autoencoder is another thing I might 

look at. 
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 The three groups that support sequential autoencoder 

disentanglement, statistical independence of latent variables, 

and information regularization are [29, 30]. Examining these 

disentanglement processes could reveal ways to enhance the 

model's functionality. VaR calculations benefit from 

including as much EONIA data as feasible; yet, the nature of 

EONIA data varies with time. In order to improve 

performance, an improved model should adjust to these 

dynamics, perhaps by conditioning on previous trading 

periods or the volatility of the current market. Performance 

profiling is possible with TensorFlow, and this could reveal 

information on algorithmic effectiveness and runtime 

optimization. But in our TensorFlow implementation, I were 

unable to ensure the model's optimal efficiency and runtime 

due to restricted access to profile TimeGAN on the LISA 

multi-GPU cluster. Including attention processes in 

TimeGAN can improve long-term dependence modeling. 

Better predictions are made possible by the attention model, 

which selectively focuses on important RNN hidden states 

to provide context vectors. 

 The field is undergoing evolution as researchers investigate 

models such as LSTNet, self-attention architectures, and 

CNNs combined with LSTMs and attention mechanisms. 

Improved LSTM network interpretability is essential, 

particularly in the financial sector. The underlying workings 

of the model might be revealed by methods for visualizing 

and interpreting LSTM activations and gate behaviors. For 

recurrent networks, methods such as batch normalization 

and layer normalization provide ways to stabilize training 

and hasten convergence. Enhancing TimeGAN's ability to 

adjust to shifting dynamics may require training it on 

particular time periods, such as stressed or non-stressed 

periods. Gaussian mixture models are one example of a 

strategy that incorporates soft classifiers to help in soft 

classification for conditioned training. The model's loss 

distributions are then influenced by these classifications. 

Prospective paths for improving TimeGAN's performance 

and suitability for conditional modeling and financial risk 

simulations are provided by these research lines. 

Investigating these areas could improve the model's 

performance and interpretability. 

VIII. CONCLUSİON AND FUTURE DİRECTİONS  

The standard TimeGAN models provide reasonably 

accurate upper 10-day and 20-day VaR estimates for 

EONIA. They do, however, have worse 1-day VaR 

estimates and lower T-VaR. TimeGAN with PLS+FM 

shows the most notable improvement; it still cannot estimate 

1-day VaR for EONIA, but it generates reasonable 10-day 

and 20-day VaR estimates. The Variance-Covariance model 

produces unreliable forecasts, however the 1-factor Vasicek 

model produces sufficient T-VaR estimations. It's interesting 

to note that although TimeGAN with PLS+FM can 

accurately forecast interest rate risks for 10 and 20 days, it is 

unable to generate as diverse EONIA simulations as the 1-

factor Vasicek model. Our analysis does not challenge the 

correctness of the ECB's proposed EONIA-ESTER 

mapping. Short-term and mid-term liquidity indicators, as 

well as inflation, are the main factors influencing the 

realness score. I successfully estimate 10-day and 20-day 

VaR for ESTER during the pre-ESTER timeframe using 

TimeGAN with PLS+FM calibrated on EONIA. But during 

the same time periods, the 1-factor Vasicek model has 

trouble projecting lower VaR for ESTER. It's interesting to 

see that TimeGAN with PLS+FM forecasts perform poorly 

for 1-day VaR estimations for ESTER, whereas the 1-factor 

Vasicek model performs respectably. 
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