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Abstract: As Deep Learning (DL) continues to be widely 

adopted, the growing field of study on the robustness of DL 

approaches in finance is gaining steam. This paper investigates the 

robustness of a Recurrent Neural Network (RNN) with Long 

Short-Term Memory (LSTM) intended for daily closing price 

predictions of Bitcoin (BTC). The research entails reproducing 

and adjusting an LSTM design from previous research, with an 

emphasis on evaluating the robustness of the network. The 

network is trained using data that has been disturbed by Gaussian 

noise to assess robustness, and the effect on predictions made 

outside of the sample is examined. To examine the impact of 

adding Gaussian noise layers and noisy dense layers on training 

accuracy and out-of-sample predictions, further robustness tests 

are conducted. The results show that the LSTM network has 

remarkable robustness to random disturbances in the data. 

Nevertheless, the Root Mean Square Error (RMSE) of the 

prediction increases with the addition of Gaussian noise and noisy 

dense layers. When random noise is present in the training data, 

the Autoregressive Integrated Moving Average (ARIMA) model is 

more vulnerable to it than the LSTM, according to the robustness 

of the two models. These findings highlight how robustness DL 

techniques are overall when compared to more conventional linear 

methods. However, because these models are black-box, the study 

highlights the significance of comprehensive testing. Although the 

robustness of the LSTM is impressive, it is important to understand 

that each network may behave differently depending on the 

circumstances. 

Index Terms: Autoregressive Integrated Moving Average, 

Bitcoin, Deep Learning, Gaussian Noise, Long Short-Term 

Memory, Recurrent Neural Network, Robustness, Root Mean 

Square Error 

I. INTRODUCTION

Artificial Intelligence (AI) systems are the cornerstone

of many applications in today's dynamic world, with Machine 

Learning (ML) serving as the foundation for many of them. 

According to [1][27][28][29], ML is the capacity of systems 

to learn from particular training data, allowing the automation 

of the creation of analytical models to address related tasks. 

Deep Learning (DL) is a well-known subfield of ML that uses 

Artificial Neural Networks (ANNs) to solve complicated 

problems. As AI, ML, and DL are frequently used 

interchangeably, it is important to understand the differences 

between them for clarity.  
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AI is the development of systems intended to mimic or 

outperform human behaviour and judgement, particularly in 

complex scenarios. Deep Neural Networks (DNNs), a 

subtype of DL, on the other hand, differ from simple one-

layer neural networks in that they include numerous hidden 

layers and sophisticated infrastructures inside these levels. 

This differentiation is crucial when we investigate the 

robustness of DL networks. 

Specifically, we study the financial prediction of a 

Recurrent Neural Network (RNN) with Long Short-Term 

Memory (LSTM) architecture, using the closing prices of 

Bitcoin (BTC) as the target variable. Sequence models, an 

important element of DL, entail creating a sequence of 

outputs based on a sequence of inputs. This paradigm is used 

in several fields, including computer vision, natural language 

processing, and self-driving automobiles. Even with their 

widespread use, end users frequently lack an understanding 

of these DL systems' underlying workings. A devoted group 

of software engineers and data scientists is responsible for 

guaranteeing the precision, robustness, and prevention of 

undesirable results in real-world situations where outside 

influences and data fluctuations may affect the behaviour of 

the model. DL applications in finance require the same 

careful consideration for random perturbations in both the 

underlying data and model behaviour. The robustness of the 

model and the calibre of the data utilised in its construction 

are critical factors in determining the outcome of significant 

capital choices that depend on the outputs of DL models. 

Therefore, this paper aims to evaluate the robustness of a 

certain type of DL network (an RNN with LSTM 

architecture) in financial prediction using BTC closing prices 

as the case study. Based on the previous five-day closing 

prices and traded volume, multiple RNNs with different 

infrastructures will be built and given the duty of forecasting 

the closing prices of BTC for the upcoming five days. The 

original LSTM model, which was motivated by [2], is 

modified to meet the goals of this investigation. Data 

covering 1247 days, from January 1, 2018, to May 31, 2021, 

is used to train the models. Several models are created via 

testing, which eventually results in creating a model that can 

produce believable predictions. To satisfy the main objective 

of evaluating its robustness, this final model is subjected to a 

rigorous examination. The study examines the model's 

susceptibility to minute perturbations or adversarial assaults 

in the training data, which may be undetectable to humans, to 

assess the robustness of the suggested LSTM network. The 

research also looks at how model perturbations affect forecast 

accuracy.  
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Adversarial assaults are based on the idea of adversarial 

examples in neural networks and entail small-scale 

modifications to training data to negatively affect the 

predictions that a neural network makes. In this work, 

different noisy layers are added to the network and training 

data is mixed with Gaussian noise to produce adversarial 

samples. We provide a detailed analysis and assessment of 

the impacts of these perturbations on the training period and 

post-training prediction accuracy on data that is not in the 

sample. Furthermore, the precision and robustness of the 

RNN created in this investigation are contrasted with those of 

a conventional Autoregressive Integrated Moving Average 

(ARIMA) model tasked with forecasting closing BTC values. 

This thorough investigation clarifies the usefulness and 

dependability of DL models, providing insightful information 

for use in the unstable field of BTC price prediction. 

 This paper is as follows; related works are shown in the 

following section. Section III provides an overview of the 

data and preprocessing. The selected model and 

implementation are explained in Section IV. Section V delves 

into the robustness evaluation debate. Section VI presents the 

findings from the experiments. The discussion part in Section 

VII offers our perspectives on the results, and Section VIII 

wraps up the paper with some conclusions and ideas for 

future research. 

II. RELATED WORKS 

DL has emerged as a potent instrument in a number of 

fields, such as finance [3], science [4]–[7], and technology 

[8]–[10]. A key element of DL, neural networks have found 

effective applications in a wide range of fields, including 

pattern recognition [11], autonomous vehicle navigation [12], 

forecasting soil erosion [13], organic chemistry reaction 

prediction [14], and stochastic control in finance 

[15][25][26], [16]. The advent of innovative solutions, such 

as DeepMind's AlphaFold [], which predicts protein 

structures using neural networks, is evidence of the 

revolutionary potential of DL in addressing challenging 

issues. Compared to standard models, neural networks—

especially deep ones—offer benefits in capturing non-linear 

interactions within training data, which improves in-sample 

fit. The accessibility of processing power, backpropagation 

techniques, and programming libraries like TensorFlow and 

PyTorch has enabled non-expert programmers to apply DL 

methods quickly. Neural networks are powerful tools, but 

they are not without restrictions. One key issue is their 

computational cost, as demonstrated by initiatives like as 

AlphaFold [17], whose model training needed massive 

amounts of data and supercomputer capacity. Furthermore, 

interpretability issues arise from DL models' "black-box" 

nature. Due to the large number of factors involved, it can be 

challenging to understand the underlying mechanics and 

behaviours of these models, which makes interpretation more 

complex than with typical linear approaches such as ARIMA 

models. One of the fundamental ideas in finance is the 

Efficient-Market Hypothesis (EMH) [2], which holds that 

asset prices accurately represent all available information. 

Research on the effectiveness of BTC markets has produced 

mixed findings; some claim that the markets are inefficient 

[18], while others claim that they have become more effective 

over time [19]. This discrepancy drives the experiments in 

this work, which build a model to forecast cryptocurrency 

values based on past prices and traded volumes and 

rigorously examine it. For financial applications, RNNs, 

which are optimised for sequential data such as time series, 

seem to be a good option. An RNN type called a LSTM 

network is particularly well-suited for modelling and 

predicting time series data in financial environments because 

it can handle problems such as disappearing or bursting 

gradients. DNNs are widely used and successful, but there 

isn't much research on how robust they are. Adversarial 

assaults are a type of testing that was first described by [20]. 

They test a network's vulnerabilities by introducing small 

disturbances. These attacks reveal neural network 

vulnerabilities that are hard for humans to find, which is why 

robustness metrics like Propagated output Quantified 

Robustness for RNNs (POPQORN) were developed. Even 

yet, there are still problems to be solved in measuring and 

enhancing neural networks' robustness in many scenarios. 

Thus, DL has advanced significantly across a range of 

domains, with neural networks exhibiting astounding powers. 

Applications include financial forecasting and scientific 

problem-solving. Nonetheless, difficulties like 

interpretability problems and processing costs highlight the 

necessity of further study to improve the robustness of DL 

models. This study sheds insight on the promise and limits of 

DL in the context of financial forecasting, as the financial 

world struggles with the efficiency of cryptocurrency 

markets. It does this by developing and analysing a model 

specifically designed to anticipate cryptocurrency values.  

The study of adversarial attacks and robustness in DL 

sequence models used in financial applications has received 

less attention than that of adversarial assaults and robustness 

in image classification and natural language processing. This 

is mostly because this field of study is new. Furthermore, 

practitioners who can create precise, cutting-edge DNNs for 

financial time series prediction that are highly robustness and 

impervious to adversarial attacks would likely be inclined to 

protect their proprietary models, realising the potentially 

profitable value of doing so. [21] are attempting to look into 

adversarial assaults in the context of high-frequency trading. 

Initially, attempts are made to estimate stock values 10 

seconds into the future based on size-weighted average 

prices, employing order book data from the prior minute. 

They provide several potential techniques for crafting hostile 

assaults. An assault technique that "works on a large number 

of past training snippets with the aim that it translates to 

unseen testing bits" is the most practical course of action. The 

findings show that their model is continuously fooled by tiny 

perturbations that are minor in comparison to the order book. 

Furthermore, they note that adversarial patterns designed to 

fool one model frequently work well to fool others—a 

phenomenon that was previously discussed in a different 

context. 
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III. DATA 

A. Data Description 

The research employs cryptocurrency data, specifically 

daily closing prices of BTC in US Dollars (USD) and volume 

data in BTC obtained from the Binance exchange. The dataset 

is 1247 days long, starting on January 1, 2018, and ending on 

May 31, 2021. Because it is the most traded cryptocurrency 

and because Binance is the largest cryptocurrency exchange 

globally based on trading volume, BTC was chosen for this 

study. The information was obtained from 

www.cryptodatadownload.com, a website that offers large-

scale cryptocurrency data from well-known exchanges at no 

cost for private or educational use. Fig. 1 below shows plots 

of the volume transacted in BTC throughout the dataset, as 

well as the closing values of BTC in USD. As previously 

noted, the study's concentration on cryptocurrencies is a 

result of possible market inefficiencies. As a result, the neural 

networks created for this study could be able to find long-

term trends in the data and somewhat accurately forecast 

future pricing. The decision to focus on cryptocurrencies was 

made because of their quick rise in the finance industry, 

which has drawn many investors who were previously 

dubious about this new asset class. Furthermore, it is well 

known that cryptocurrency markets are extremely volatile. 

This has been demonstrated by past events, like as a 12% 

decline in price after an unexpected tweet from a powerful 

billionaire. It is expected that DL techniques, despite the 

data's intrinsic volatility, would be able to identify pricing 

trends and may even beat conventional linear models. 

 

 

Fig. 1: Left: BTC Close Prices (USD). Right: Volume 

Traded (BTC) 

B. Dataset Preprocessing and Windowing 

The data will first be divided into three separate pieces. 

As of January 1, 2018, the first 90% of the data will be used 

as the training dataset. 10% will be further divided: two-thirds 

will be used as the validation dataset, and the remaining three-

thirds will be used as the test dataset. The MinMax scaler will 

then be used to scale the data between zero and one. The data 

in all three blocks will be windowed into arrays of successive 

five-day inputs after scaling. Five-day closing prices and 

volumes will be utilised in this windowing method to forecast 

the asset's following five-day closing pricing. Next, these 

forecasts—referred to as the outputs—will be contrasted with 

the actual five-day closing prices. Fig. 2 shows a graphic 

depiction of the data windowing throughout the first 10 days 

of the training dataset. The closing price and volume traded 

at time t are represented by each orange block in this 

depiction, while the closing price at time t is represented by 

each blue block. The validation and test data sets will undergo 

the same windowing process. The network will be fitted and 

trained using the training data. As not directly used in the 

model fitting process, the validation set will make it possible 

to evaluate the model's generalisation skills while it is being 

trained. Lastly, nothing will be seen or affected by the test 

dataset, also known as unseen data, while the model is being 

trained. It will be applied to creating predictions based on the 

trained model's parameters as evaluating the model's results 

in predicting out-of-sample data. 

 

 

Fig. 2. Data Windowing Process for Training Data 

IV. MODEL IMPLEMENTATION 

A. Model Inspiration 

The models utilised in this research are based on models 

developed by [2]. The authors' work involved the use of 

LSTM networks for regression to forecast changes in the 

NIFTY 50 stock price on the National Stock Exchange of 

India (NSE). The authors developed four different DL 

models: an RNN with one LSTM layer with 200 nodes, and 

three more dense layers with 100, 5, and 5 nodes, 

respectively. Our work replicates this basic architecture but 

adds certain adjustments, such as adding more LSTM and 

thick layers and using regularisation approaches. Concerning 

the models put forward in the previous study, these 

modifications seek to investigate possible improvements in 

prediction skills. In line with [2], we windowed the data, 

forecasting the next five-day pricing based on the five-day 

data that came before it. Nonetheless, experimenting with 

other input and prediction window widths is still a possibility. 

[2]'s study has a big impact on this work, and it fits in 

perfectly with the main goal of looking at how robustness a 

DL sequence model is in a financial setting. Furthermore, the 

amazing findings given by [2] emphasise the potency of DL 

with LSTM architecture compared to alternative ML 

approaches used to the same stock prediction problem. By 

using Root Mean Squared Error (RMSE) to assess prediction 

accuracy, the authors showed that LSTM-based models 

performed better than SVM regressions, random forests, and 

boosted regressions. Crucially, the authors left open the 

possibility of this study delving deeper into the robustness of 

models with a comparable purpose and architecture—in our 

instance, BTC price prediction—by not delving too far into 

the robustness of the models they created. 
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B. Model Building 

During the model-building process, numerous 

frameworks were experimented with, involving the testing of 

different layer types, amounts of layers, and neurons in each 

layer over a range of networks. The previously mentioned 

model metrics will be used to compare the training, 

validation, and out-of-sample accuracy of various models, 

along with a few significant milestones from the model-

building process. The first stage was to replicate [2] LSTM1 

model. Our five-day windowed training data, which includes 

daily volume traded and close prices, makes up the input layer 

of this model. As such, the input layer's form is identified as 

(5, 2). The input data is then processed by an LSTM layer 

with 200 neurons after that. The LSTM1 layer then directs its 

output to two dense layers: one with 100 neurons and the 

other with five neurons. The output layer is a dense layer with 

five neurons that generates predictions for the next five days 

based on the windowed data that has been supplied. The 

ReLU activation function is used in every layer. The model is 

trained for 500 epochs with the ADAM optimizer at a 

learning rate of 0.00001, with the selected loss function being 

the Mean Squared Error (MSE). MSE and RMSE for this 

model are shown in Fig. 3. Fig. 3 shows a significant 

difference between the RMSE and loss values for the training 

and validation sets. This mismatch shows that while the 

model performs well in fitting the training data, it struggles 

to generalise successfully to the validation dataset. As a 

result, efforts were made to improve this baseline model's 

performance especially for our situation. While creating a 

state-of-the-art model for BTC prediction is not the main goal 

of this research, the goal is to construct a model with adequate 

prediction skills so that the robustness of a neural network 

that produces reasonable forecasts may be examined. 

 

Fig. 3: LSTM1 MSE and RMSE for Training and 

Validation Datasets 

Initially, the Leaky ReLU function was substituted for 

each activation function in the previous model in an effort to 

improve model performance. In this adaption, the α rate that 

was assigned to 0.2 by default in the Keras package was 

utilised. From now on, this altered network will be called 

LSTM2. It's significant to remember that the general 

architecture from the prior model was not altered. The 

training and validation sets' RMSE improved somewhat as a 

result of this modification. Fig. 4 shows plots of the MSE and 

RMSE for LSTM2. The Leaky ReLU activation function has 

been kept as the activation function for because to the 

improved performance shown at each layer. 

 

Fig. 4: LSTM2 MSE and RMSE for Training and 

Validation Datasets 

While LSTM2 and the third created model of interest, or 

LSTM3, are identical, the third model included a second 

LSTM layer with 200 neurons following the first LSTM 

layer. By adding another layer, the network is made deeper, 

which make it possible to identify more subtle trends in the 

data. However, it is crucial to realise that this also prolong the 

training period and may lead to overfitting. Fig. 5 provides 

plots showing the model's training and validation losses as 

well as the RMSE. The observed improvement in the 

accuracy metrics with the addition of the extra LSTM layer 

led to the retention of this architectural modification in 

subsequent models. 

 

Fig. 5: LSTM3 MSE and RMSE for Training and 

Validation Datasets 

The next significant step forward in the model-building 

process was adding a second dense layer to the network and 

investigating differences in the number of nodes in each 

layer. Then, LSTM4 is presented, with two successive LSTM 

layers that are identical to the previous one, but with four 

succeeding dense layers that have five, twenty, sixty, and one 

node each. When compared to LSTM3, LSTM4 performed 

better, as seen by the statistic that showed it reduced the 

RMSE for the validation set and just slightly increased it for 

the training set. The MSE and RMSE for this model are 

shown in Fig. 6, which shows significant variations from the 

results for LSTM1. 

 

Fig. 6: LSTM4 MSE and RMSE for Training and 

Validation Datasets 
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Experimentation was also conducted by introducing 

dropout regularization to LSTM4 between each of the dense 

layers; however, this did not yield additional improvements 

in reducing the loss or RMSE, nor did it contribute to 

mitigating potential overfitting. In instances where the 

dropout rate was relatively high, it proved detrimental to the 

model's metrics. Plots illustrating the MSE and RMSE for 

LSTM5, featuring a dropout regularization rate of 0.3, are 

presented in Fig. 7. Oscillatory effects were induced in the 

performance metrics by the dropout regularization, leading to 

a failure of convergence in both training and validation loss. 

Consequently, the decision has been made not to proceed 

with the addition of dropout regularization to the network. 

Instead, LSTM4 will be retained as the final model for 

conducting the primary objective of this work, which 

involves investigating the robustness of a DL sequence 

model. 

 

Fig. 7: LSTM5 MSE and RMSE for Training and 

Validation Datasets 

C. Model Performance 

LSTM4 is the model chosen to go closer to the main goal 

of this work. It performed well on the training and validation 

datasets, exhibiting little loss and RMSE. In summary, the 

suggested RNN for robustness analysis is set up with four 

dense layers—100, 60, and 20 neurons each—and two LSTM 

layers—each with 200 neurons—before reaching the final 

output layer, which has five neurons as previously mentioned. 

Each layer's activation function is the Leaky ReLU, with α set 

at 0.2. Upon comparing the plots of MSE and RMSE for this 

final model in Figure 6 to those for LSTM1 in Figure 3, it is 

evident that LSTM4 exhibits significantly lower loss and 

RMSE. While there exists the possibility of further 

refinement through continuous tuning of model 

hyperparameters, adjusting the number of layers within the 

network, and experimenting with different learning rates and 

optimizers to enhance accuracy, this is not the central focus 

of this work. While there are 40 days' worth of prices in the 

unseen out-of-sample dataset, it would be unreasonable to 

make forecasts for all 40 days. This is because the validation 

dataset's 80 days, which coincide with a time of notable bull 

run in the BTC market generally, were not used to train our 

model. When such a critical time is removed from the training 

data, our neural network can miss certain underlying trends. 

To assess out-of-sample performance, we thus limited our 

unseen dataset to the first 15 prices and volumes. In a real-

world situation, when fresh data is collected, say at the end of 

the day or after five days, and the overall architecture 

consistently produces forecasts that beat the market, the 

model would be continuously modified and retrained. For the 

sake of this investigation, we do not make this ongoing 

modification to see how robustness tests affect training, 

validation, out-of-sample loss, and RMSE. The RMSE that 

results from predicting prices with the unseen dataset is 

0.1179. To acquire the real and anticipated values, the scaling 

procedure must be reversed because these numbers are 

scaled. Fig. 8 provides plots showing the genuine prices and 

projections of the model. Considering that the model's sole 

inputs were closing prices and volume traded, its forecast 

performance is impressive. Moreover, the unseen dataset has 

the most current prices from the complete dataset, but the 

validation dataset, which had more recent prices, was not 

used to train the model.  

 

Fig. 8: Predicted and Actual BTC Prices (USD) for 

LSTM4 

V. ROBUSTNESS EVALUATION 

The first technique used to evaluate the model's 

robustness is to generate Gaussian noise and then add it to the 

training set of data. The zero mean and variable standard 

deviation define the Gaussian noise. At the beginning, the 

standard deviation is initially kept very small to "disguise" 

the additional noise and preserve the unnoticeable nature of 

the robustness tests. Furthermore, there is flexibility in how 

many noise perturbations are produced. By experimenting 

with a high number of perturbations from the same 

distribution as compared to a limited number of perturbations 

in the training data, this variability aims to investigate 

whether there is any impact on the model's training 

performance. Every disturbance is dispersed at random 

among the blocks and added at random to one of the five 

block closing prices. It's crucial to remember that the 

disturbances can only have an impact on one closing price 

each five-day block. This perturbation needs to be performed 

to both the input and output vectors in order to preserve data 

consistency. For an illustration of noise injection in a single 

five-day block, see Fig. 9, where xi stands for the closing price 

at time i and represents the Gaussian noise. The data that is 

disturbed is indicated in red. This technique was picked 

mostly for its simplicity, as introducing noise to the training 

data is a trivial operation, especially considering that the 

training data is scaled between 0 and 1 owing to the nature of 

the MinMax scaler. Secondly, this sort of noise injection 

connects nicely with our prior discussion of adversarial 

assaults, when minor perturbations are injected to the data 

with the purpose of limiting model performance. 

Nonetheless, it is crucial to maintain the realism of this noise 

injection since the perturbations are meant to be negligible 

enough for people or other detection methods to miss them. 

The literature recognises this type of data augmentation as a 

common regularisation technique and a way to evaluate the 

robustness of the model. 
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Fig. 9: Noise Injection Example 

[22] misclassified a time series because of undetectable 

noise perturbing it in a time series classification task. Using 

the same DL infrastructure as the final model, we will fit and 

train a model using the adjusted noisy training data, and we 

will explore the effects of different noise intensities and 

frequencies on the model. The model's performance will then 

be assessed on our unseen out-of-sample dataset and 

contrasted with the original data setting used to train LSTM4. 

There are several techniques to introduce noise into the neural 

network itself. The inclusion of Gaussian noise layers 

between neural network layers and the substitution of noisy 

dense layers for dense layers in the DL model will be the two 

main techniques discussed. This is a little less practical way 

to introduce an adversarial perturbation since it would require 

a quantitative researcher to build the code to add these layers 

to their network, but testing the robustness of a DL model 

using this experiment is still very important. This experiment 

adds to the evaluation of the potential "black box" issue with 

certain models. The incorporation of synthetic noise into the 

model's internal structure might reveal the model's 

susceptibility to additional unanticipated inputs or mistakes 

made during the model-building phase. To put the 

performance and robustness of the RNN created in this work 

into context, a comparison will be made against that of 

traditional linear methods. An ARIMA model designed for 

predicting closing prices, like our neural network, will be 

created. The performance of this ARIMA model in predicting 

prices for the unseen data will be investigated. Additionally, 

the ARIMA model's parameters and the statistical 

significance of these parameters will be explored when noise 

is added to the data used to fit the model, like the noise 

injection technique for LSTM4. Despite ARIMA models 

being somewhat obsolete for modelling asset prices and 

having been replaced by more complicated ML methods, this 

comparison is crucial for contextualizing the robustness or 

potential vulnerability of the LSTM networks created in this 

work. 

VI. RESULTS 

A. Data Noise Injection Results 

Initially, Gaussian noise with a standard deviation of 0.01 

to 25 days was added to the training data in order to verify 

robustness utilising the noise injection approach. Considering 

that the training set contained prices for more than 1000 days, 

this was a rather modest number of days, but it was still a 

useful baseline. The original data is shown in red in Fig. 10, 

and the noisy data is shown in blue. It is seen that the two 

lines are almost identical. Because of this, humans are 

unlikely to notice this augmentation of the training data. Fig. 

11 shows plots of the MSE and RMSE of the LSTM4 trained 

on this noisy data set. There was a very minor reduction in 

the training data's RMSE. At 0.1179, the RMSE of the 

forecasts for the hidden data did not change. The noise 

injection experiment was then repeated, adding 100 Gaussian 

noise samples to the training set this time. Analyzing a plot 

of the data in Fig. 12 revealed that, once again, the 

disturbance was mostly undetected. As seen in Fig. 13, the 

supplemented data again had no effect on the training and 

validation loss and RMSE. At 0.1182, the RMSE for the out-

of-sample data stayed mostly unaltered. 

 

Fig. 10: Noisy and Original Training Data with 25 Noisy 

Data Points 

 

Fig. 11: MSE and RMSE for Training Data with 25 

Noisy Days and Validation Data 

 

Fig. 12: Noisy and Original Training Data with 100 

Noisy Data Points 

 

Fig. 13: MSE and RMSE for Training Data with 100 

Noisy Days and Validation Data 
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After the two previous noise injection experiments 

showed no significant decline in the model's prediction 

power, an extreme example was tested by introducing 250 

noise samples at random throughout the training data and 

raising the noise standard deviation to 0.1. Fig. 14 illustrates 

how this augmentation has an impact. Upon examining this 

figure, a researcher would undoubtedly detect some 

inaccuracy made during the data processing phase. Still, the 

procedure went forward, and this enhanced data was used to 

train the model. Surprisingly, despite the significant noise 

supplied to the training data, the MSE and RMSE of the noisy 

data points seemed to have little to no influence, as seen in 

Fig. 15. In addition, the out-of-sample RMSE was 0.1169, 

which is comparable to earlier tests using original and noisy 

training data. In contrast to the first two trials, there was a 

little rise in the training RMSE. 

 

Fig. 14: Noisy and Original Training Data with 250 

Noisy Data Points 

 

Fig. 15: MSE and RMSE for Training Data with 100 

Noisy Days and Validation Data 

B. Model Noise Injection Results 

a. Gaussian Noise Layers 

The outcomes of applying Gaussian noise layers to the 

network are shown in order to evaluate the various 

approaches for introducing noise into the network itself. The 

suggested final model was first modified by adding three 

Gaussian noise layers with a standard deviation of 0.02. 

Following the second LSTM layer, one was added, and then 

one following each of the subsequent two dense layers. Plots 

of the MSE and RMSE during the model training phase can 

be found in Fig. 16. With respect to the unseen dataset, the 

RMSE of the predictions was virtually stable at 0.1166. 

 

Fig. 16: MSE and RMSE for LSTM4 with Three 

Gaussian Noise Layers 

Additional Gaussian noise layer was added, with the first 

three in the same places as previously in the model, and 

another Gaussian noise layer before the last dense layer, 

without having a significant impact on the MSE and RMSE 

from the prior experiment. Additionally, the standard 

deviation was raised to 0.1 in every layer to look at the 

possible impact of raising the perturbation. It is evident from 

Fig. 17 that the accuracy of the network for the training and 

validation data was affected by both the addition of an 

additional noisy layer and raising the standard deviation of 

the Gaussian noise. This jitter effect indicates that the loss 

cannot converge, proving detrimental to the predictions for 

the unseen dataset, which had an RMSE of 0.4019 compared 

to an RMSE of 0.1179 for LSTM4. Fig. 18 displays a 

visualisation of the predictions generated by this perturbed 

network. It is evident that their forecasts are noticeably poorer 

than LSTM4's. 

 

Fig. 17: MSE and RMSE for LSTM4 with Four 

Gaussian Noise Layers 

 

Fig. 18: Predicted and Actual Prices for LSTM4 with 

Four Gaussian Noise Layers 

 

b. Noise Dense Layers 

The following set of data shows what happens when noisy 

dense layers are added to some of the RNN's dense layers. 

Initially, a noisy dense layer with a standard deviation of 0.1 

was added in place of the dense layer with 100 neurons. The 

noisy layer was substituted for this layer, and the MSE and 

RMSE graphs in Fig. 19 show that this change had an instant 

impact on the metrics for validation data, causing some 

oscillatory effects. With this model, the RMSE of the 

predictions for the unseen data was 0.1567, which was 

somewhat less accurate than our final model's accuracy. 

Following the observation that one noisy dense layer had a 

negative influence on the model metrics during training, an 

analysis was carried out to determine the unfavourable effect 

of replacing all dense layers—with the exception of the final 

output layer.  
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The 100, 60, and 20 neuron dense layers were swapped 

out with noisy dense layers with standard deviations of 0.1 

and the corresponding number of neurons in each layer. As 

can be seen in Fig. 20, the results from the preceding 

experiment were amplified as predicted. This also had an 

impact on the 0.1829 RMSE of the predictions made using 

the unseen dataset. It is noticeable that this performance is 

poorer than the RMSE for LSTM4 but better than the findings 

from the last trial with Gaussian noise layers. 

 

Fig. 19: MSE and RMSE for Training Data with One 

Noisy Dense Layer 

 

Fig. 20: MSE and RMSE for Training Data with Three 

Noisy Dense Layers 

C. Comparison with ARIMA 

The out-of-sample predictions for the same 15 days, 

generated by the ARIMA (2, 1, 2) model are presented in Fig. 

21. It is evident that predictions made by this model are 

inferior when compared to our LSTM4 network in terms of 

accuracy in out-of-sample data. The same projection was 

executed, but the ARIMA (2, 1, 2) model was updated after 

making a 5-day prediction. This involved fitting the ARIMA 

(2, 1, 2) model again, incorporating the actual values from the 

unseen dataset into the training data. The predictions for this 

updated model are presented in Fig. 22. Even though this 

significantly altered fitting method is an improvement over 

the prior model, it still has a very low five-day prediction 

power. It basically establishes that the price of BTC will stay 

practically unchanged until the model is updated throughout 

the refitting process with the real price at the beginning of the 

following five-day timeframe. Additionally, Gaussian 

noise—which is comparable to the noise provided for training 

the RNN—was added to the training data in order to fit the 

ARIMA model. The additional noise was applied to 15% of 

the closing prices over a period of 1200 days, with a standard 

deviation of 0.1. A plot illustrating the loud and original 

pricing is given in Fig. 23. Once more, there is not much of a 

difference between this noise and the original. 

 

Fig. 21: ARIMA (2, 1, 2) 15-Day Projections 

 

Fig. 22: ARIMA (2, 1, 2) 15-Day Projections with Model 

Updating 

 

Fig. 23: ARIMA (2, 1, 2) Noisy Training Data 

VII. DISCUSSION 

It can be seen from the RMSE and the plot of our final 

model's predictions that the model offers reasonable forecasts 

for each of the three five-day window periods in the out-of-

sample dataset. In a little critical note, there are times in the 

15-day forecasts where the expected prices are around 7,000 

less than the actual price. It would be quite difficult to predict 

daily BTC values using only past closing prices and trade 

volumes with a level of accuracy that would beat the market. 

Examining the MSE and RMSE for the training data, it is 

accepted that there are faint indications of overfitting; the 

RMSE is around 0.04. Adding dropout regularisationin an 

attempt to fix this didn't help the RMSE converge. This may 

be resolved in future studies by adjusting the learning rate, 

adding more input variables, and investigating alternative 

regularisation techniques. It was shown that using noisy data 

to train the model did not significantly alter the RMSE for the 

out-of-sample predictions. It is not unexpected, nevertheless, 

that the training loss and RMSE marginally increased when 

trained on the noisiest data, with σ = 0.1.  
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Practitioners who may experience noise in their data from 

randomness or imprecise measuring techniques may find 

these results encouraging. They could still be certain that the 

noise won't materially impair their ability to foresee. This 

accords with the findings of [23], where sequence-to-

sequence models are regarded to be resilient to adversarial 

assaults in the data. The RMSE for the out-of-sample 

predictions in the first case, where three Gaussian noise layers 

with a standard deviation of 0.02 were added to the network, 

was marginally higher than the RMSE for the original model. 

While there is a tiny jitter pattern in the training RMSE plot 

shown in Figure 16, there is not a significant increase. The 

random generation of the Gaussian noise for every training 

session is probably the cause of this jitter effect. When the 

standard deviation was raised to 0.1 and an additional 

Gaussian noise layer was added to the network, this impact 

was amplified. The model's inability to converge was evident 

from the increasing training and validation MSE and RMSE, 

which may be attributed to the Gaussian noise layers. This 

impact extended to the predictions made outside of the 

sample, where the RMSE was 0.4019, far higher than the 

LSTM4 estimate. The training and validation loss were first 

somewhat impacted by the addition of one noisy dense layer, 

with the out-of-sample RMSE rising to 0.1576 from the 

LSTM4 baseline of 0.1179. The impacts on the MSE and 

RMSE increased with the replacement of two more thick 

layers. Surprisingly, the noisy thick layers kept the RMSE 

from converging, which is why the validation RMSE suffered 

the most. Even though the RMSE increased to 0.1829, the 

effect on out-of-sample accuracy was not as significant as it 

was with the Gaussian noise layers. The number of noisy 

layers and the noise standard deviation both had a significant 

role in the model's disruption. These findings could suggest 

that an RNN is more vulnerable to disturbances transferred 

across network layers than they are to disturbances contained 

inside a layer. Furthermore, it was discovered that the 

ARIMA model outperformed the LSTM models in out-of-

sample prediction and was very sensitive to disturbances in 

the data. This is consistent with [24] claim that RNNs are 

significantly more effective than conventional linear 

techniques. 

VIII. CONCLUSION AND FUTURE WORKS 

It was possible to develop an RNN with LSTM 

architecture that could reasonably forecast BTC values. 

Increasing the depth and adding LSTM layers to the network 

increased prediction accuracy for validation dataset and the 

out-of-sample dataset. The DL sequence model was resilient 

to random perturbations in the data, even when the magnitude 

and quantity of perturbations in the training data were 

unreasonably enormous, according to tests conducted to 

assess the model's resilience. However, the addition of noisy 

dense layers and Gaussian noise layers, especially several 

disruptive layers, weakened the resilience of the model. The 

most notable decline in model accuracy was found in 

Gaussian noise layers, particularly when the noise's standard 

deviation was raised to 0.1. These model disruptions 

highlight the need for prudence while building deeper 

networks, as demonstrated by models such as Alpha Fold, 

which consists of many linked networks. For out-of-sample 

prediction, the RNN performed better than a linear ARIMA 

model and demonstrated resistance to data disturbances, 

which resulted in significant changes to the AR and MA 

parameters of the ARIMA model. So, the LSTM showed a 

respectable level of resilience; only intrusive, sometimes 

unreasonably large perturbations were necessary to get it to 

perform less well. Even though it was successful, this work 

has flaws and deserves more debate. It may be argued that a 

model trained just on volume traded and closing prices would 

not provide hidden excess alpha over time. However, the goal 

was to concentrate on the main goals of this work rather than 

to create a cutting-edge model that might compete with 

quantitative hedge funds. Despite having just six layers and 

over 500,000 parameters, LSTM4's model complexity was 

maintained manageable in order to achieve the key 

objectives. The EMH may impose constraints on these 

models, and subsequent iterations may experiment with 

various time scales and prediction windows in order to 

evaluate their robustness at minute, second, or even lower 

time scales. Nonetheless, before evaluating the robustness of 

these models, it would be crucial to take into account how 

market dynamics could change over incredibly short time 

periods. Given their projected future use, it will remain 

imperative to investigate the robustness of financial DL 

models. 
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