
International Journal of Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-1 Issue-10, September 2013

 8

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: J04440911013/2013©BEIESP



Abstract: Shortest paths, or close to shortest paths, are

commonly used in everyday situations. The paper reviews the

various algorithms available for the problem. One of the famous

technique Dijkstra’s algorithm solves the single-source shortest

path problem on any directed graph in O(m+nlogn) worst-case

time when a Fibonacci heap is used as the frontier set data

structure. Paper Setup must be in A4 size with Margin: Top 1.78

cm, Bottom 1.78 cm, Left 1.78 cm, Right 1.65 cm, Gutter 0 cm, and

Gutter Position Top. Paper must be in two Columns after Authors

Name with Width 8.59 cm, Spacing 0.51 cm. Whole paper must be

with: Font Name Times New Roman, Font Size 10, Line Spacing

1.05 EXCEPT Abstract, Keywords (Index Term), Paper Tile,

References, Author Profile (in the last page of the paper,

maximum 400 words), All Headings, and Manuscript Details

(First Page, Bottom, left side).Paper Title must be in Font Size 24,

Bold, with Single Line Spacing. Authors Name must be in Font

Size 11, Bold, Before Spacing 0, After Spacing 16, with Single

Line Spacing. Please do not write Author e-mail or author address

in the place of Authors name. Authors e-mail, and their Address

details must be in the Manuscript details. Abstract and Keywords

(Index Term) must be in Font Size 9, Bold, Italic with Single Line

Spacing. All MAIN HEADING must be in Upper Case, Centre,

and Roman Numbering (I, II, III…etc), Before Spacing 12, After

Spacing 6, with single line spacing. All Sub Heading must be in

Title Case, Left 0.25 cm, Italic, and Alphabet Numbering (A, B,

C…etc), Before Spacing 6, After Spacing 4, with Single Line

Spacing. Manuscript Details must be in Font Size 8, in the Bottom,

First Page, and Left Side with Single Line Spacing. References

must be in Font Size 8, Hanging 0.25 with single line spacing.

Author Profile must be in Font Size 8, with single line spacing.

Fore more details, please download TEMPLATE HELP FILE

from the website.

Key Words: Best first search, combinatorial explosion ,

empirical time Euclidean, radius search

I. INTRODUCTION

 The use of shorter paths occurs naturally when traveling

between two locations, whether this is travel from one room

to another, from one street address to another, or from one

city to another. Taking a long path typically makes no sense,

since doing so results in time being wasted. Thus, shorter
paths are preferred for reasons of efficiency. To achieve the

greatest efficiency when traveling between two points, it is

necessary to take a path that is shortest among all possible

paths; that is, the shortest path. Generally speaking, a shortest

path is one of minimal cost.

The problem of computing shortest paths commonly arises

when the most cost-efficient route through a transportation or

communication network needs to be found. In the case of

transportation, cost may be represented by a combination of

factors, including distance traveled, time spent, fuel used,

tolls paid, or many other factors.

Manuscript Received September, 2013

Mrs. Sushma, Student in department of Computer science and

engineering, S.B.M.N engineering college, Asthal Bhoar, Rohtak, India.

II. BASIC TERMINOLOGY

 The exact definition being used for cost depends on the

specific problem being solved. While shorter paths tend to be
used naturally, determining truly shortest paths allows more

efficient use of networks. Solving shortest paths by plain

intuition is not always guaranteed to obtain the correct result.

The truly shortest path, or that of minimum cost, is not always

the most obvious choice.

For example, consider finding the shortest path in order to

minimize the time spent traveling between two locations in a

city. Here cost is measured in terms of the time spent

traveling. The shortest path may require taking a detour in

order to avoid traffic congestion. Such a path can be

completely different from the path that is shortest in terms of
distance traveled. Even with cost defined as distance traveled

the correct choice of shortest path may be counter-intuitive.

Furthermore, large shortest path problems are typically too

complex to solve accurately by hand.

By computing shortest paths, rather than using intuition, a

correct result can always be obtained. Shortest path problems

in general are described using the concept of a graph may be

either directed or undirected. The edges in an undirected

graph have no direction associated with them, and can be

thought of as allowing travel in both directions.

In contrast, the edges in a directed graph have an associated
direction, which can be thought of as specifying the direction

of travel. Think of edges in a directed graph as being

one-way, and edges in an undirected graph as two-way. The

edges of a graph can be weighted, in which case each edge

has an associated cost. In the case of a transportation network,

this cost may be the distance along a road between two

vertices.

Shortest path problems are represented using directed

graphs, since the cost from one vertex to another may be

different in the opposite direction. The edges in a graph form

paths connecting vertices. Any such path similarly has an

associated cost (or distance), which corresponds to the sum of
costs of edges along the path. The existence of alternative

paths between a pair of vertices in a graph.

III. SEARCH ALGORITHM

 One possible approach to solving shortest path problems

would be to pre-calculate and store the shortest path from

every node to every possible other node, which would allow

us to answer a shortest path query in constant time.

Unfortunately the required storage size and computation time
grows with the square of the number of nodes. With realistic

road networks in mind this processing would take years if not

decades and be virtually impossible to store. Hence to

overcome this problem we require real time search

techniques. From previous studies we know that the

implementation of labeling algorithms is the fastest for

one-to-one searches. Two

aspects are particularly

important to the shortest path

Shortest Path Algorithms Techniques

 Sushma, Jyoti Pruthi

Shortest Path Algorithms Techniques

 9

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: J04440911013/2013©BEIESP

algorithms discussed in this project:

1. the strategies used to select the next node to be visited

during a search, and

2. the data structures utilized to maintain the set of

previously visited nodes.

A number of data structures can be used to manipulate the set
of nodes in order to support search strategies. These data

structures include arrays, singly and doubly linked lists,

stacks, heaps, buckets and queues. Detailed definitions and

operations related to these data structures are standard

knowledge and are well documented. Past research has

concentrated mainly on the issue of data structures, which can

be manipulated and bounded to form clever techniques in

creating priority queues for selecting nodes to be scanned. A

good example of this is the Dijkstra implementation with

double buckets. In a labeling algorithm, the number of visited

nodes during a search is a good indication of the size of the

search space. This means that a search strategy which visits
fewer nodes during a search is generally more efficient in

terms of processing speed. The number of nodes visited

depends on the depth d (i.e. the number of arcs on the optimal

path) of the destination from the origin, and the branching

factor b. For a „best first search‟ the number of nodes

explored during a search is of the order O(bd). This

Exponential growth in the number of explored nodes is

known as “combinatorial explosion” and is the main obstacle

in computing shortest paths in large networks. (Note that

even though Dijkstra‟s algorithm is polynomial in the number

of nodes n in
the graph, this bound is no restriction on how the number of

nodes visited varies with d). For general search this

exponential growth with depth makes many problems

unsolvable on current hardware, as memory is soon

exhausted and a solution may take an unreasonable time to

compute. These effects can be lessened by using artificial

intelligence (heuristic type) techniques which will be

discussed later. However let us first define and implement

Dijkstra‟s labeling algorithm.

A. Dijkstra’s Naive Implementation

Dijkstra‟s labeling method is a central procedure in shortest

path algorithms. The output of the labeling method is an

out-tree from a source node s, to a set of nodes L. An out-tree

is a tree originating from the source node to other nodes to

which the shortest distance from the source node is known.

This out-tree is constructed iteratively, and the shortest path

from s to any destination node t in the tree is obtained upon
termination of the method. Three pieces of information are

required for each node i in the labeling method while

constructing the shortest path tree:

• the distance label, d(i),

• the parent-node/predecessor p(i),

• the set of permanently labeled nodes L.

The distance label d(i) stores an upper bound on the shortest

path distance from s to i, while p(i) records the node that

immediately precedes node i in the out-tree. If a node has not

yet been added to the out-tree, it is considered „unreached‟.

Normally the distance label of an unreached node is set to

infinity. When we know that the shortest path from node s to
node i is also the absolute shortest path, then node i is called

permanently labeled. When further improvement is expected

to be made on the distance from the origin to node i, then

node i is considered only temporarily labeled. It follows that

d(i) is an upper bound on the shortest path distance to node i if

node i is temporarily labeled, and d(i) represents the final

optimal shortest path distance to node i if the node is

permanently labeled . By iteratively adding a temporarily

labeled node with the smallest distance label d(i) to the set of

permanently labeled nodes L, Dijkstra’s algorithm

guarantees optimality.
One advantage with Dijkstra‟s labeling algorithm is that the

algorithm can be terminated when the destination node is

permanently labeled. Most other algorithms guarantee

optimal shortest paths only upon termination when the entire

shortest path tree has been explored.

B. Symmetrical Dijkstra Algorithm

 Pohl adapted Dijkstra‟s shortest path algorithm to decrease

the size of the search space. Pohl‟s algorithm was the first

to use a bi-directional search method. This algorithm consists

of a forward search from an origin node to the destination

node and a backwards search from the destination node to the

origin node. This was done in an attempt to reduce the search

complexity to O(bd/2) compared to O(bd) as with Dijkstra‟s

algorithm. This search method assumes that the two searches

grow symmetrically and will meet in some middle area.

Sometimes this might not be the case, and as a worst-case

scenario this might instead become two O(bd) searches.
The Symmetrical or Bi-directional Dijkstra‟s algorithm by

Pohl grows two search trees, one from the origin, giving a

tree spanning a set of nodes LF for which the minimum

distance/time from the origin is known, and a second from the

destination that gives a tree spanning a set of nodes LB for

which the minimum distance/time to the destination is

known. We iteratively add one node to either LF or LB until

there exists an arc crossing from LF to LB.

Like Dijkstra‟s algorithm Pohl‟s bi-directional search

chooses the node with the smallest cost label to label

permanently. By selecting the new permanently labeled node

from either the forward or backward phases we maintain the
Dijkstra criterion required for optimality.

C. A* Search

 So far we have examined search techniques that can be

generalized for any network (as long as it does not contain

negative length cycles). However the physical nature of real

road networks motivates investigation into the possible use of
heuristic solutions that exploit the near-Euclidean network

structure to reduce solution times while hopefully obtaining

near optimal paths. For most of these heuristics the goal is to

bias a more focused search towards the destination. As we

shall see, incorporating heuristic knowledge into a search can

dramatically reduce solution times. When the underlying

network is Euclidean or approximately Euclidean as is the

case of road networks, then it is possible to improve the

average case run time of the Dijkstra and Symmetrical

Dijkstra algorithms. This is usually at the expense of

optimality; solutions are now not guaranteed to be the best.
Typically when solving problems on such networks the

inherent geometric information is ignored by algorithms that

are directly based or variations on Dijkstra‟s labeling

algorithm. The A* algorithm by Hart and Nilsson formalized

the concept of integrating a heuristic into a search procedure.

Instead of choosing the next node to label permanently as that

with the least cost (as measured from the start node), the

choice of node is based on the

cost from the start node plus an

estimate of proximity to the

International Journal of Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-1 Issue-10, September 2013

 10

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: J04440911013/2013©BEIESP

destination (a heuristic estimate). To build a shortest path

from the origin s to the destination t, we use the original

distance from s accumulated along the edges (as in Dijkstra‟s

algorithm) plus an estimate of the distance to t. Thus we use

global information about our network to guide the search for

the shortest path from s to t. This algorithm places more
importance on paths leading towards t than paths moving

away from t. In essence the A* algorithm combines two

pieces of information:

1. the current knowledge available about the upper bounds

(given by the distance labels d(i)), and

2. an estimate of the distance from a leaf node of the search

tree to the destination.

There are several ways to estimate the lower bound from a

leaf node in the search tree to the destination node. These

estimations are carried out by so called “evaluation”

functions. The closer this estimate is to a tight lower bound on

the distance to the destination, the better the quality of the A*
Search. Hence the merits of an A* search depends highly on

the evaluation function h(i,j). There are two main evaluation

functions used in the A* search. A true lower bound between

two points is the length of a straight line between those two

points (i.e. the Euclidean distance):

 hₑ(i,t) = √((x(i)-x(t))² + (y(i)-y(t))²)

where x(i), y(i) and x(t), y(t) are the coordinates for node i

and the destination node t respectively. The other commonly

used evaluation function is the Manhattan distance h. In this
case the estimated lower bound distance is the sum of

distance in the x and y coordinates.

 hm(i,t) = ǀ x(i)-x(t) ǀ +ǀ y(i)-y(t) ǀ

 The Manhattan distance is not the true lower bound

between two points and hence will typically yield

non-optimal results. By using time as a measure of cost, the

network becomes near-Euclidean. This is because of the

varying speeds of roads in the network. Roads of similar

lengths might have different times associated with using

those roads. If the network is not strictly Euclidean but
near-Euclidean then our selection criteria for the next node to

label permanently will not yield optimal results. By using the

A* search, the shortest path tree should now grow towards t

(unlike Dijkstra‟s algorithm where the tree grows

approximately radially). As before, the search for the shortest

path is terminated as soon as t is added to the shortest path

tree. Earlier we discussed the problem of combinatorial

explosion with a blind search time complexity in the order of

O(bd). With A* search this is reduced to O(bed) where be is

the effective branching factor. The A* search reduces the

search space by reducing the number of node expansions.
Although A* is still susceptible to the problem of

combinatorial explosion, it decreases the effect by reducing

the size of the base in the complexity term.

D. Weighted A* Search

 By choosing an appropriate multiplicative factor we can

increase the contribution of the estimated component in

calculating the label of a vertex (i.e. increase the contribution

of the evaluation function). From an intuitive standpoint this

corresponds to further biasing the forward search towards the

destination and the backward search towards the origin. The

heuristic is parameterized by the multiplicative factor termed

the “overdo” parameter used to weight the evaluation

function. This modification will generally not yield optimal

paths, but we would expect it to further reduce the search

space. The aim is to find an “optimal” multiplicative or

overdo factor for which the running time is significantly

improved while the solution quality is still acceptable. Thus

there will be an empirical time/performance trade-off as a

function of the overdo parameter.

E. Radius Search

 To eliminate or minimize the effects of combinatorial

explosion we need to adopt a search technique similar to the

way humans approach navigation problems. So far we have

not implemented any intelligence within a search which can

filter out roads that are less likely to be traveled on. This type
of intelligence requires some form of historical knowledge

about the network. Since the road network does not change

very often it is possible to calculate auxiliary information in a

pre-processing step. Perhaps the most obvious way to classify

the roads in the network is to identify the class of each road

(i.e. motorways, highways, local roads etc), and then to

exploit these classes in the search. This is similar to the way

humans approach routing problems and is known as

Hierarchical Search. Hierarchical methods offer the prospect

of greatly reducing the size of any search by simplifying the

search through a series of simplified levels, where each of
these levels is an abstraction of the previous level. These

abstractions reduce the overall size of the search space that an

algorithm addresses and thus the complexity of any search is

reduced. For route finding, hierarchical levels are constructed

in which higher speed roads are placed higher up in the

hierarchy. However by introducing these arbitrary hierarchies

the path optimality is often lost. The hierarchical algorithm

uses a discrete number of hierarchy levels. A Radius search is

a hierarchical search with a continuous range of hierarchy

levels. A Radius search takes advantage of the fact that the

fastest path between two junctions is more likely to use a

highway than a local road, especially if the two junctions are
far apart. In this method each node i has an associated radius

r(i). Before we consider how r(i) is calculated, we first

examine how radii can be used to restrict a search. When

looking for a shortest path from s to t, a node i is considered

as a possible node to include in the search only if s or t lies

inside a circle of radius r(i) centered at node i. If both

distances are greater than the node radius, the node is simply

ignored. For any given origin and destination node, we can

immediately simplify the network by removing all the nodes

(and associated arcs) whose radii do not encircle the origin or

destination nodes. The radius search is not a search algorithm
by itself, but an independent mechanism of reducing search

complexity. Hence the radius concept can be used in

conjunction with any search algorithm. The effectiveness of

the Radius search depends on the way we calculate.

IV. CONCLUSION

 By exploiting the physical structure of road networks, the

A* algorithm is able to bias its search towards a goal and

reduce the search space. By using the concept of radii as a
measure of importance of nodes, we are able to incorporate

pre-processing within our shortest path algorithm to further

restrict the search space. This

dramatically reduces the search

complexity in terms of the run

Shortest Path Algorithms Techniques

 11

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: J04440911013/2013©BEIESP

time performance while still maintaining an acceptable level

of inaccuracy.

ACKNOWLEDGMENT

 The author gratefully acknowledges the motivation

received from all the friends with special reference to my

guide Miss Jyoti Pruthi working in department of Computer

science and engineering at Shree Baba Masthnath

engineering college, Asthal Bhoar, Rohtak for the healthy

discussions on the subject. I also express my deep gratitude to

my husband Er. Sandeep Kharb for his patience,

understanding, cooperation, constant encouragement,

guidance and blessings.

REFERENCES

1. G. B. Dantzig. Linear Programming and Extensions. Princeton

University Press, 1962

2. T. M. Chan, A. Efrat, and S. Har-Peled. Fly Cheaply: On the Minimum

Fuel Consumption Problem. Journal of Algorithms, 41(2):330–337,

2001..

3. R. Bauer, D. Delling, and D. Wagner. Experimental Study on

Speed-Up Techniques for Timetable Information Systems. In C.

Liebchen, R. K. Ahuja, and J. A. Mesa, editors, Proceedings of the 7th

Workshop on Algorithmic Approaches for Transportation Modeling,

Optimization, and Systems (ATMOS‟07), pages 209–225.

Internationales Begegnungs- und Forschungszentrum für Informatik

(IBFI), Schloss Dagstuhl, Germany,2007.C. J. Kaufman, Rocky

Mountain Research Lab., Boulder, CO, private communication, May

1995.

4. R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and

D. Wagner. Combining Hierarchical and Goal-Directed Speed-Up

Techniques for Dijkstra‟s Algorithm. In C. C. McGeoch, editor,

Proceedings of the 7th Workshop on Experimental Algorithms

(WEA‟08), volume 5038 of Lecture Notes in Computer Science, pages

303–318. Springer, June 2008.

5. R. Bauer and D. Delling. SHARC: Fast and Robust Unidirectional

Routing. In I. Munro and D. Wagner, editors, Proceedings of the 10th

Workshop on Algorithm Engineering and Experiments (ALENEX‟08),

pages 13–26. SIAM, 2008.

6. V.Batz, D. Delling, P. Sanders, and C. Vetter. Time-Dependent

Contraction Hierarchies. In Proceedings of the 11th Workshop on

Algorithm Engineering and Experiments (ALENEX‟09). SIAM, 2009.

7. Saunders, S., and Takaoka, T. Improved shortest path algorithmsfor

nearly acyclic graphs. In Proc. Computing: The Australasian

TheorySymposium, vol. 42 of Electronic Notes in Theoretical

Computer Science. 2001.

8. Cherkassy B V, Goldberg A V and Radzik T. (1993) Shortest Paths

Algorithms:Theory and Experimental Evaluation. Research project,

Department of Computer Science, Cornell and Stanford Universities

and Krasikova Institute for Economics and Mathematics

AUTHOR PROFILE

Author Profile :- Passed B.Tech in 2011 from Jind

Institute Of Engineering and Technology under

Kurukshetra university, Kurukshetra with 74.40

percent and presently doing M.Tech from Shree Baba

Masthnath Engineering college, Rohtak. And

presented a paper on „Data Mining And KDD‟ in an

international conference jointly organized by Indian

Socity of biomechanics IIT Roorke & Prannath

Parnami Universe, Hissar.

Author Profile :- Had done B.tech and M.tech in

Computer Science And engineering. And presently

working with S.B.M.N Engineering College, Asthal

Bohar, Rohtak as Asst. Prof.

