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Abstract: Shortest paths, or close to shortest paths, are 

commonly used in everyday situations. The paper reviews the 

various algorithms available for the problem. One of the famous 

technique Dijkstra’s algorithm solves the single-source shortest 

path problem on any directed graph in O(m+nlogn) worst-case 

time when a Fibonacci heap is used as the frontier set data 
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I. INTRODUCTION 

  The use of shorter paths occurs naturally when traveling 

between two locations, whether this is travel from one room 

to another, from one street address to another, or from one 

city to another. Taking a long path typically makes no sense, 

since doing so results in time being wasted. Thus, shorter 
paths are preferred for reasons of efficiency. To achieve the 

greatest efficiency when traveling between two points, it is 

necessary to take a path that is shortest among all possible 

paths; that is, the shortest path. Generally speaking, a shortest 

path is one of minimal cost.  

The problem of computing shortest paths commonly arises 

when the most cost-efficient route through a transportation or 

communication network needs to be found. In the case of 

transportation, cost may be represented by a combination of 

factors, including distance traveled, time spent, fuel used, 

tolls paid, or many other factors.  
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II. BASIC TERMINOLOGY 

  The exact definition being used for cost depends on the 

specific problem being solved. While shorter paths tend to be 
used naturally, determining truly shortest paths allows more 

efficient use of networks. Solving shortest paths by plain 

intuition is not always guaranteed to obtain the correct result. 

The truly shortest path, or that of minimum cost, is not always 

the most obvious choice. 

For example, consider finding the shortest path in order to 

minimize the time spent traveling between two locations in a 

city. Here cost is measured in terms of the time spent 

traveling. The shortest path may require taking a detour in 

order to avoid traffic congestion. Such a path can be 

completely different from the path that is shortest in terms of 
distance traveled. Even with cost defined as distance traveled 

the correct choice of shortest path may be counter-intuitive. 

Furthermore, large shortest path problems are typically too 

complex to solve accurately by hand.  

By computing shortest paths, rather than using intuition, a 

correct result can always be obtained. Shortest path problems 

in general are described using the concept of a graph may be 

either directed or undirected. The edges in an undirected 

graph have no direction associated with them, and can be 

thought of as allowing travel in both directions.  

In contrast, the edges in a directed graph have an associated 
direction, which can be thought of as specifying the direction 

of travel. Think of edges in a directed graph as being 

one-way, and edges in an undirected graph as two-way. The 

edges of a graph can be weighted, in which case each edge 

has an associated cost. In the case of a transportation network, 

this cost may be the distance along a road between two 

vertices.  

Shortest path problems are represented using directed 

graphs, since the cost from one vertex to another may be 

different in the opposite direction. The edges in a graph form 

paths connecting vertices. Any such path similarly has an 

associated cost (or distance), which corresponds to the sum of 
costs of edges along the path. The existence of alternative 

paths between a pair of vertices in a graph.  

III. SEARCH ALGORITHM 

   One possible approach to solving shortest path problems 

would be to pre-calculate and store the shortest path from 

every node to every possible other node, which would allow 

us to answer a shortest path query in constant time. 

Unfortunately the required storage size and computation time 
grows with the square of the number of nodes. With realistic 

road networks in mind this processing would take years if not 

decades and be virtually impossible to store. Hence to 

overcome this problem we require real time search 

techniques. From previous studies we know that the 

implementation of labeling algorithms is the fastest for 

one-to-one searches. Two 

aspects are particularly 

important to the shortest path 

Shortest Path Algorithms Techniques 

 Sushma, Jyoti Pruthi 



 

Shortest Path Algorithms Techniques 

   9 

 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: J04440911013/2013©BEIESP 

 

 

algorithms discussed in this project:  

1.  the strategies used to select the next node to be visited 

during a search, and  

2.  the data structures utilized to maintain the set of 

previously visited nodes.  

A number of data structures can be used to manipulate the set 
of nodes in order to support search strategies. These data 

structures include arrays, singly and doubly linked lists, 

stacks, heaps, buckets and queues. Detailed definitions and 

operations related to these data structures are standard 

knowledge and are well documented. Past research has 

concentrated mainly on the issue of data structures, which can 

be manipulated and bounded to form clever techniques in 

creating priority queues for selecting nodes to be scanned. A 

good example of this is the Dijkstra implementation with 

double buckets. In a labeling algorithm, the number of visited 

nodes during a search is a good indication of the size of the 

search space. This means that a search strategy which visits 
fewer nodes during a search is generally more efficient in 

terms of processing speed. The number of nodes visited 

depends on the depth d (i.e. the number of arcs on the optimal 

path) of the destination from the origin, and the branching 

factor b. For a „best first search‟ the number of nodes 

explored during a search is of the order O(bd). This 

Exponential growth in the number of explored nodes is 

known as “combinatorial explosion” and is the main obstacle 

in computing shortest paths in large networks. (Note that 

even though Dijkstra‟s algorithm is polynomial in the number 

of nodes n in  
the graph, this bound is no restriction on how the number of 

nodes visited varies with d). For general search this 

exponential growth with depth makes many problems 

unsolvable on current hardware, as memory is soon 

exhausted and a solution may take an unreasonable time to 

compute. These effects can be lessened by using artificial 

intelligence (heuristic type) techniques which will be 

discussed later. However let us first define and implement 

Dijkstra‟s labeling algorithm.  

A. Dijkstra’s Naive Implementation 

Dijkstra‟s labeling method is a central procedure in shortest 

path algorithms. The output of the labeling method is an 

out-tree from a source node s, to a set of nodes L. An out-tree 

is a tree originating from the source node to other nodes to 

which the shortest distance from the source node is known. 

This out-tree is constructed iteratively, and the shortest path 

from s to any destination node t in the tree is obtained upon 
termination of the method. Three pieces of information are 

required for each node i in the labeling method while 

constructing the shortest path tree:  

•  the distance label, d(i),  

•  the parent-node/predecessor p(i),  

•  the set of permanently labeled nodes L.  

The distance label d(i) stores an upper bound on the shortest 

path distance from s to i, while p(i) records the node that 

immediately precedes node i in the out-tree. If a node has not 

yet been added to the out-tree, it is considered „unreached‟. 

Normally the distance label of an unreached node is set to 

infinity. When we know that the shortest path from node s to 
node i is also the absolute shortest path, then node i is called 

permanently labeled. When further improvement is expected 

to be made on the distance from the origin to node i, then 

node i is considered only temporarily labeled. It follows that 

d(i) is an upper bound on the shortest path distance to node i if 

node i is temporarily labeled, and d(i) represents the final 

optimal shortest path distance to node i if the node is 

permanently labeled . By iteratively adding a temporarily 

labeled node with the smallest distance label d(i) to the set of 

permanently labeled nodes L, Dijkstra’s algorithm 

guarantees optimality.  
One advantage with Dijkstra‟s labeling algorithm is that the 

algorithm can be terminated when the destination node is 

permanently labeled. Most other algorithms guarantee 

optimal shortest paths only upon termination when the entire 

shortest path tree has been explored.  

B. Symmetrical Dijkstra Algorithm 

   Pohl adapted Dijkstra‟s shortest path algorithm to decrease 

the size of the search     space. Pohl‟s algorithm was the first 

to use a bi-directional search method. This algorithm consists 

of a forward search from an origin node to the destination 

node and a backwards search from the destination node to the 

origin node. This was done in an attempt to reduce the search 

complexity to O(bd/2) compared to O(bd) as with Dijkstra‟s 

algorithm. This search method assumes that the two searches 

grow symmetrically and will meet in some middle area. 

Sometimes this might not be the case, and as a worst-case 

scenario this might instead become two O(bd) searches.  
The Symmetrical or Bi-directional Dijkstra‟s algorithm by 

Pohl grows two search trees, one from the origin, giving a 

tree spanning a set of nodes LF for which the minimum 

distance/time from the origin is known, and a second from the 

destination that gives a tree spanning a set of nodes LB for 

which the minimum distance/time to the destination is 

known. We iteratively add one node to either LF or LB until 

there exists an arc crossing from LF to LB.  

Like Dijkstra‟s algorithm Pohl‟s bi-directional search 

chooses the node with the smallest cost label to label 

permanently. By selecting the new permanently labeled node 

from either the forward or backward phases we maintain the 
Dijkstra criterion required for optimality. 

C. A* Search 

     So far we have examined search techniques that can be 

generalized for any network (as long as it does not contain 

negative length cycles). However the physical nature of real 

road networks motivates investigation into the possible use of 
heuristic solutions that exploit the near-Euclidean network 

structure to reduce solution times while hopefully obtaining 

near optimal paths. For most of these heuristics the goal is to 

bias a more focused search towards the destination. As we 

shall see, incorporating heuristic knowledge into a search can 

dramatically reduce solution times. When the underlying 

network is Euclidean or approximately Euclidean as is the 

case of road networks, then it is possible to improve the 

average case run time of the Dijkstra and Symmetrical 

Dijkstra algorithms. This is usually at the expense of 

optimality; solutions are now not guaranteed to be the best. 
Typically when solving problems on such networks the 

inherent geometric information is ignored by algorithms that 

are directly based or variations on Dijkstra‟s labeling 

algorithm. The A* algorithm by Hart and Nilsson formalized 

the concept of integrating a heuristic into a search procedure. 

Instead of choosing the next node to label permanently as that 

with the least cost (as measured from the start node), the 

choice of node is based on the 

cost from the start node plus an 

estimate of proximity to the 
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destination (a heuristic estimate). To build a shortest path 

from the origin s to the destination t, we use the original 

distance from s accumulated along the edges (as in Dijkstra‟s 

algorithm) plus an estimate of the distance to t. Thus we use 

global information about our network to guide the search for 

the shortest path from s to t. This algorithm places more 
importance on paths leading towards t than paths moving 

away from t. In essence the A* algorithm combines two 

pieces of information:  

1.  the current knowledge available about the upper bounds 

(given by the distance labels d(i)), and   

2.  an estimate of the distance from a leaf node of the search 

tree to the destination.   

There are several ways to estimate the lower bound from a 

leaf node in the search tree to the destination node. These 

estimations are carried out by so called “evaluation” 

functions. The closer this estimate is to a tight lower bound on 

the distance to the destination, the better the quality of the A* 
Search. Hence the merits of an A* search depends highly on 

the evaluation function h(i,j). There are two main evaluation 

functions used in the A* search. A true lower bound between 

two points is the length of a straight line between those two 

points (i.e. the Euclidean distance):  

  

                  hₑ(i,t) = √((x(i)-x(t))² + (y(i)-y(t))²) 

 

where x(i), y(i) and x(t), y(t) are the coordinates for node i 

and the destination node t respectively. The other commonly 

used evaluation function is the Manhattan distance h. In this 
case the estimated lower bound distance is the sum of 

distance in the x and y coordinates.  

 

                  hm(i,t) = ǀ x(i)-x(t) ǀ +ǀ y(i)-y(t) ǀ 

 

   The Manhattan distance is not the true lower bound 

between two points and hence will typically yield 

non-optimal results. By using time as a measure of cost, the 

network becomes near-Euclidean. This is because of the 

varying speeds of roads in the network. Roads of similar 

lengths might have different times associated with using 

those roads. If the network is not strictly Euclidean but 
near-Euclidean then our selection criteria for the next node to 

label permanently will not yield optimal results. By using the 

A* search, the shortest path tree should now grow towards t 

(unlike Dijkstra‟s algorithm where the tree grows 

approximately radially). As before, the search for the shortest 

path is terminated as soon as t is added to the shortest path 

tree. Earlier we discussed the problem of combinatorial 

explosion with a blind search time complexity in the order of 

O(bd). With A* search this is reduced to O(bed) where be is 

the effective branching factor. The A* search reduces the 

search space by reducing the number of node expansions. 
Although A* is still susceptible to the problem of 

combinatorial explosion, it decreases the effect by reducing 

the size of the base in the complexity term.  

D. Weighted A* Search 

 By choosing an appropriate multiplicative factor we can 

increase the contribution of the estimated component in 

calculating the label of a vertex (i.e. increase the contribution 

of the evaluation function). From an intuitive standpoint this 

corresponds to further biasing the forward search towards the 

destination and the backward search towards the origin. The 

heuristic is parameterized by the multiplicative factor termed 

the “overdo” parameter used to weight the evaluation 

function. This modification will generally not yield optimal 

paths, but we would expect it to further reduce the search 

space. The aim is to find an “optimal” multiplicative or 

overdo factor for which the running time is significantly 

improved while the solution quality is still acceptable. Thus 

there will be an empirical time/performance trade-off as a 

function of the overdo parameter.   

E. Radius Search 

     To eliminate or minimize the effects of combinatorial 

explosion we need to adopt a search technique similar to the 

way humans approach navigation problems. So far we have 

not implemented any intelligence within a search which can 

filter out roads that are less likely to be traveled on. This type 
of intelligence requires some form of historical knowledge 

about the network. Since the road network does not change 

very often it is possible to calculate auxiliary information in a 

pre-processing step. Perhaps the most obvious way to classify 

the roads in the network is to identify the class of each road 

(i.e. motorways, highways, local roads etc), and then to 

exploit these classes in the search. This is similar to the way 

humans approach routing problems and is known as 

Hierarchical Search. Hierarchical methods offer the prospect 

of greatly reducing the size of any search by simplifying the 

search through a series of simplified levels, where each of 
these levels is an abstraction of the previous level. These 

abstractions reduce the overall size of the search space that an 

algorithm addresses and thus the complexity of any search is 

reduced. For route finding, hierarchical levels are constructed 

in which higher speed roads are placed higher up in the 

hierarchy. However by introducing these arbitrary hierarchies 

the path optimality is often lost. The hierarchical algorithm 

uses a discrete number of hierarchy levels. A Radius search is 

a hierarchical search with a continuous range of hierarchy 

levels. A Radius search takes advantage of the fact that the 

fastest path between two junctions is more likely to use a 

highway than a local road, especially if the two junctions are 
far apart. In this method each node i has an associated radius 

r(i). Before we consider how r(i) is calculated, we first 

examine how radii can be used to restrict a search. When 

looking for a shortest path from s to t, a node i is considered 

as a possible node to include in the search only if s or t lies 

inside a circle of radius r(i) centered at node i. If both 

distances are greater than the node radius, the node is simply 

ignored. For any given origin and destination node, we can 

immediately simplify the network by removing all the nodes 

(and associated arcs) whose radii do not encircle the origin or 

destination nodes. The radius search is not a search algorithm 
by itself, but an independent mechanism of reducing search 

complexity. Hence the radius concept can be used in 

conjunction with any search algorithm. The effectiveness of 

the Radius search depends on the way we calculate. 

IV. CONCLUSION 

    By exploiting the physical structure of road networks, the 

A* algorithm is able to bias its search towards a goal and 

reduce the search space. By using the concept of radii as a 
measure of importance of nodes, we are able to incorporate 

pre-processing within our shortest path algorithm to further 

restrict the search space. This 

dramatically reduces the search 

complexity in terms of the run 
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time performance while still maintaining an acceptable level 

of inaccuracy. 
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