
International Journal of Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-1 Issue-4, March 2013

6

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0165031413/2013©BEIESP

Abstract— In the concept of Message Passing Interface (MPI)

chatting and file transmission the decryption part will be done

automatically. Here three types of keys are used; they are public,

private and secret key. Keys are displayed to the destination only if

they accept the request or else displaying of key is not possible in

the destination side and also it won’t give or establish the

Connection. In largely spread clusters, computing nodes are

naturally deployed in a variety of computing sites. The

Information processed in a spread cluster is communal among a

group of distributed processes or client by high-quality of

messages passing protocols (e.g. message passing interface - MPI)

running on the Internet. Because of the open available nature of

the Internet, data encryption for these large-scale distributed

clusters becomes a non-trivial and challenging problem. We

improved the security of the MPI protocol by encrypting and

decrypting messages sent and received among computing nodes.

We are listening carefully on MPI rather than more protocols

because MPI is one of the most accepted communication

protocols for cluster computing environments. From among a

multiple of MPI implementations, we selected MPICH2 developed

by the Argonne National Laboratory. Design goal of MPICH2 - a

commonly use MPI implementation - is to join portability with

high presentation. we gives a security enhanced MPI-library with

the standard MPI interface, data communications of a

conservative MPI program can be secured without converting the

program into the corresponding secure report. We included

encryption algorithms into the MPICH2 library so that data in

secret of MPI applications could be readily preserved without

require modifying the source codes of the MPI applications. This

system use Sandia Micro Benchmark and Intel MPI Benchmarks

to evaluate and compared the performance of original MPICH2

and Enhanced Security MPICH2. According to the performance

estimation, ES-MPICH2 provides protected Message Passing

Interface by give up sensible system performance.

Index Terms— Secret key, Encryption, MPI, Parallel

Computing, Cryptosystem

I. INTRODUCTION

In unclustered networks, the data encryption for large

scale distributed clusters becomes a non trivial and

challenging problem, due to the open accessible nature of the

internet. Information processed in a distributed cluster is

shared among a group of distributed processes or users by

virtue of Message Passing protocols (e.g. Message Passing

Interface -MPI) running on the internet. To combine the

portability with high performance the ES-MPICH2 with the

original MPICH2 version is used for incurring the overhead

by the confidentiality services. Due to high performance

clusters, the security overhead can be reduced in

Manuscript received on March 2013.

A.Brillia, with the department of computer science, Dr. Paul’s

Engineering College, Chennai, India.

D.Jagadiswary, with the Department of computer science, Dr. Paul’s

Engineering College, Chennai, India.

R.Muthu Venkata Krishnan, with the Department of computer science,

Jaya Engineering College, Chennai, India.

ES-MPICH2. To preserve the data confidentiality, the

encryption algorithm can be integrated into the MPICH2

library. To encode messages using Advanced Encryption

Standard (AES), Triple Data Encryption Standard (3DES)

and Elliptic Curve Cryptography (ECC) are the three

cryptographic techniques used in Message Passing Interface

system to provide a data confidentiality for several computing

nodes.

 It is a nontrivial and challenging problem to offer

confidentiality services for large-scale distributed clusters,

because there is an open accessible nature of the open

networks. To address this issue, we enhanced the security of

the MPI protocol by encrypting and decrypting messages sent

and received among computing nodes. Numerous scientific

and commercial applications running on clusters were

developed using the MPI protocol. Among a variety of MPI

implementations, we picked MPICH2 developed by the

Argonne National Laboratory. The design goal of

MPICH2—a widely used MPI implementation— is to

combine portability with high performance. We integrated

encryption algorithms into the MPICH2 library. Thus, data

confidentiality of MPI applications can be readily preserved

without a need to change the source codes of the MPI

applications

A. Possible Approaches

There are three possible approaches to improving security

of MPI applications. In first approach, application

programmers can add source code to address the issue of

message confidentiality. For example, the programmers may

rely on external libraries (e.g., SEAL [26] and Nexus [11]) to

implement secure applications. Such an application-level

security approach not only makes the MPI applications error

prone, but also reduces the portability and flexibility of the

MPI applications. In the second approach, the MPI interface

can be extended in the way that new security-aware APIs are

designed and implemented .This MPI-interface-level solution

enables programmers to write secure MPI applications with

minimal changes to the interface. Although the second

approach is better than the first one, this MPI-interface-level

solution typically requires an extra code to deal with data

confidentiality. The third approach—a channel-level

solution—is proposed in this study to address the drawbacks

of the above two approaches. Our channel-level solution aims

at providing message confidentiality in a communication

channel that implements the Channel Interface 3 (CH3) in

MPICH2

Implementing Cryptographic Techniques in

Message Passing Interface Systems

A.Brillia, D. Jagadiswary, R. Muthu Venkata Krishnan

Implementing Cryptographic Techniques in Message Passing Interface System

7

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0165031413/2013©BEIESP

B. Contributions

The three major contributions of this study includes

 We implemented a standard MPI mechanism called

ES-MPICH2 to offer data confidentiality for secure

network communications in message passing

environments. Our proposed security technique

incorporated in the MPICH2 library can be very useful

for protecting data transmitted in open networks like the

Internet.

 The ES-MPICH2 mechanism allows application

programmers to easily write secure MPI applications

without additional code for data-confidentiality

protection. We seek a channel-level solution in which

encryption and decryption functions are included into the

MPICH2 library. Our ES-MPICH2 maintains a standard

MPI interface to exchange messages while preserving

data confidentiality.

 The implemented ES-MPICH2 framework provides

Secured configuration file that enables application

programmers to selectively choose any cryptographic

algorithm and symmetric-key in ES-MPICH2. This

feature makes it possible for programmers to easily and

fully control the security services incorporated in the

MPICHI2 library. To demonstrate this feature, we

implemented the AES, 3DES and ECC algorithms in

ESMPICH2. We also show in this paper how to add other

cryptographic algorithms into the ES-MPICH2

framework.

II. RELATED WORK

Due to an increasing number of commodity clusters

connected to each other by public networks, the encrypting

and decrypting messages sent and received among computing

nodes are not efficient and the data confidentiality is not

readily preserved. So to implement secure applications, the

programmers may rely on external libraries (e.g. SEAL [26]

and NEXUX [11]).There is a minimal changes to the interface

to write the secure MPI applications and the calculation time

and memory needs for larger key sizes are more in the popular

asymmetric cryptosystems like RSA.

III. ENHANCED SECURITY – MPICH2

To offer data confidentiality for secure network

communications in message passing environments, a standard

MPI mechanism called ES-MPICH2 was introduced. This

proposed security technique incorporated in the MPICH2

library can be very useful for protecting data transmitted in

open networks like the Internet. The ES- MPICH2 mechanism

allows application programmers to easily write secure MPI

applications without any additional code for

data-confidentiality protection. We seek a channel-level

solution in which encryption and decryption functions are

included into the MPICH2 library. Thus the ES-MPICH2

maintains a standard MPI interface to exchange messages

while preserving data confidentiality. ES-MPICH2

framework provides a secured configuration file that enables

application programmers to selectively choose any

cryptographic algorithm. It provides easy and full control of

security services. AES, 3DES and ECC algorithms are used

in ESMPICH2.

A. Scope of ES- MPICH2

Confidentiality, integrity, availability, and authentication

are four important security issues to be addressed in clusters

connected by an unsecured public network. Rather than

addressing all the security aspects, we pay particular attention

to confidentiality services for messages passed among

computing nodes in an unsecured cluster.

Although preserving confidentiality is our primary

concern, an integrity checking service can be readily

incorporated into our security framework by applying a

public-key cryptography scheme. In an MPI framework

equipped with the public-key scheme, sending nodes can

encode messages using their private keys. In the message

receiving procedure, any nodes can use public keys

corresponding to the private keys to decode messages. If one

alters the messages, the ciphertext cannot be deciphered

correctly using public keys corresponding to the private keys.

Thus, the receiving nodes can perform message integrity

check without the secure exchange of secret keys.

B. Design structure of ES- MPICH2

One of the objectives in MPICH2 design is portability. To

facilitate porting MPICH2 from one platform to another,

MPICH2 uses ADI3 (the third generation of the Abstract

Device Interface) to provide a portability layer. ADI3 is a

full-featured abstract device interface and has many functions,

so it is not a trivial task to implement all of them. To reduce

the porting effort, MPICH2 introduces the CH3 interface.

CH3 is a layer that implements the ADI3 functions, and

provides an interface consisting of only a dozen functions. A

“channel” implements the CH3 interface. Channels exist for

different communication architectures such as TCP sockets,

SHMEM, etc. Because there are only a dozen functions

associated with each channel interface, it is easier to

implement a channel than the ADI3 device.

The hierarchical structure of MPICH2, as shown in

Figure1, gives much flexibility to implementers. The three

interfaces (ADI3, CH3, and RDMA Channel Interface)

provide different trade-offs between communication

performance and ease of porting. As a successor of MPICH,

MPICH2 [1] aims to support not only the MPI-1 standard, but

also functionalities such as dynamic process management,

one-sided communication and MPI I/O, which are specified

in the MPI-2 standard.

Fig 1. ES- MPICH2 implementation structure

International Journal of Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-1 Issue-4, March 2013

8

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0165031413/2013©BEIESP

However, MPICH2 is not merely MPICH with MPI-2

extensions. It is based on a completely new design, aiming to

provide more performance, flexibility and portability than the

original MPICH2. The future development for MPICH,

including those necessary to accommodate extensions to the

MPI Standard now being contemplated by the MPI Forum.

The process of creating a standard to enable portability of

message-passing applications codes began at a workshop on

Message Passing Standardization and the Message Passing

Interface (MPI). Confidentiality, integrity, availability, and

authentication are four important security issues to be

addressed in clusters connected by an unsecured public

network. Rather than addressing all the security aspects, we

pay particular attention to confidentiality services for

messages passed among computing nodes in an unsecured

cluster. Although preserving confidentiality is our primary

concern, an integrity checking service can be readily

incorporated into our security framework by applying a

public-key cryptography scheme.

IV. IMPLEMENTATION DETAILS

During the implementation, the system involves Key

Agreement, Advanced Encryption Standard, Triple Data

Encryption Standard, Elliptic Curve Cryptography, File

Chatting and File Sharing. Figure 2 depicts the

implementation structure of ES-MPICH2, where a

cryptosystem is implemented in the TCP socket layer. Thus

the messages are encrypted and decrypted in the TCP socket

channel rather than the ADI3 and CH3 layers. We addressed

1. In which layer should we implement cryptographic

algorithms?

2. Which cryptosystem should we choose to implement?

3. How to implement secure key management?

Fig 2. Implementation structure of ES-MPICH2 in which

the cryptosystem is implemented in the TCP socket layer

for complete transparency.

A. Key Agreement

In Key Agreement, the Diffie–Hellman key exchange

algorithm is used that establishes a shared secret that can be

used for secret communications by exchanging data over a

public network. Figure 3 presents the key agreement

infrastructure using Arithmetic XOR operations (e.g. 1 0→

1). The terminal A and terminal B can share their secret keys

by using hash functions. The positive response (e.g. 1) can be

saved in the source side. The positive acknowledgement can

be stored in the destination side. Thus the secret

communications is done by accepting the secret key in the

destination side and if it is matched send the

acknowledgement to the destination side.

B. Advanced Encryption Standard

AES is based on a design principle known as a

substitution-permutation network, and is fast in both software

and hardware. Unlike its predecessor DES, AES does not use

a Feistel network. AES is a variant of Rijndael which has a

fixed block size of 128 bits, and a key size of 128, 192, or 256

bits. By contrast, the Rijndael specification per se is specified

with block and key sizes that may be any multiple of 32 bits,

both with a minimum of 128 and a maximum of 256 bits.

 AES operates on a 4×4 column-major order matrix of bytes,

termed the state, although some versions of Rijndael have a

larger block size and have additional columns in the state.

Most AES calculations are done in a special finite field.

Fig 3 Key Agreement using XOR operations for sharing

secret keys.

 The key size used for an AES cipher specifies the number of

repetitions of transformation rounds that convert the input,

called the plaintext, into the final output, called the cipher

text. The numbers of cycles of repetition are as follows:

 10 cycles of repetition for 128 bit keys.

 12 cycles of repetition for 192 bit keys.

 14 cycles of repetition for 256 bit keys.

 Each round consists of several processing steps, including

one that depends on the encryption key itself. A set of reverse

rounds are applied to transform cipher text back into the

original plaintext using the same encryption key.

 Figure 4 depicts the internal operations of Advanced

Encryption Standard in which each round consists of four

special functions. They are

 Byte Substitution

 Permutation

 Arithmetic operations over a finite field

 XOR with a key

 These transformations are applied to a 128-bit input

block in a certain sequence to perform an AES encryption or

decryption. In both cases, the transformations are grouped to

so-called rounds. There are three different types of rounds,

namely, the initial round, the normal round, and the final

round. AES is a symmetric block

cipher. It acts as a resistance

against all known attacks.

http://en.wikipedia.org/wiki/Key_size
http://en.wikipedia.org/wiki/Column-major_order
http://en.wikipedia.org/wiki/Finite_field_arithmetic

Implementing Cryptographic Techniques in Message Passing Interface System

9

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0165031413/2013©BEIESP

 In a wide range of platforms, the AES has speed and code

compactness. The key unit is used to store keys and to

calculate the key expansion function. Due to the fact that the

AES is standardized for 128, 192, and 256-bit keys, the

interface between the key unit and the data unit is designed for

the key expansion for several different key sizes can be

implemented on the same chip. It is the preferred algorithm

for implementations of cryptographic protocols.

Fig 4 Internal operations of Advanced Encryption

Standard.

C. Triple Data Encryption Standard

The original DES cipher's key size of 56 bits was generally

sufficient when that algorithm was designed, but the

availability of increasing computational power made

brute-force attacks feasible. Triple DES provides a relatively

simple method of increasing the key size of DES to protect

against such attacks, without the need to design a completely

new block cipher algorithm. Triple DES uses a "key bundle"

which comprises three DES keys, K1, K2 and K3, each of 56

bits (excluding parity bits). Figure 5 depicts the internal

operation of Triple Data Encryption Standard in which it has

three keys (56 x 3 = 168 bits) for encryption and decryption.

Fig 5 Internal operation of Triple Data Encryption

Standard.

The encryption algorithm is:

Cipher text = EK3(DK2(EK1(plaintext)))

 i.e., DES encrypts with K1, DES decrypt with K2, then DES

encrypt with K3.Decryption is the reverse:

Plaintext = DK1(EK2(DK3(cipher text)))

i.e., decrypt with K3, encrypt with K2, and then decrypt with

K1.

D. Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is an approach to

public-key cryptography based on the algebraic structure of

elliptic curves over finite fields. Popular asymmetric

cryptosystems like RSA are known to be very costly

concerning calculation time and memory needs for larger key

sizes. To solve this problem, elliptic curve cryptosystems

based can be used.

 An elliptic curve cryptosystem is an asymmetric

cryptosystem relying on the hardness of the discrete logarithm

problem in elliptic curve groups With ECIES encryption, it is

possible to encrypt data with a 160-bit key as secure as with

RSA using a 1024-bit key. So ECIES encryption is the better

choice compared to RSA when calculation time and available

memory are restricted, e.g. when using cryptosystems on

smartcards

Fig 6 Internal operation of Elliptic Curve Cryptography

The Elliptic Curve Integrated Encryption Scheme

(ECIES), also known as Elliptic Curve Augmented

Encryption Scheme or simply the Elliptic Curve Encryption

Scheme.

 Figure 6 depicts the internal operations of Elliptic Curve

Cryptography in which two parity cells are added and

compared and if it is accepted then no error is found if it is not

accepted then the error is detected by the Error Correction

Unit.

V. BENCHMARKS FOR POINT TO POINT

OPERATIONS

In this section we present some of the simplest

benchmarks for performance of MPICH on various platforms.

The performance test programs mpptest and goptest can

produce a wealth of information; the script basetest, provided

with the MPICH implementation, can be used to get a more

complete picture of the behavior of a particular system. Here,

we present only the most basic

data: short- and long-message

performance.

International Journal of Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-1 Issue-4, March 2013

10

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D0165031413/2013©BEIESP

 For the short-message graphs, the only options used with

mpptest are -auto and –size 0 1000 40. The option -auto tells

mpptest to choose the sizes of the messages so as to reveal the

exact message size where there is any sudden change in

behavior (for example, at an internal packet-size boundary).

The -size option selects messages with sizes from 0 to 1000

bytes in increments of 40 bytes. The short-message graphs

give a good picture of the latency of message passing.

For the long-message graphs, a few more options are used.

Some make the test runs more efficient. The size range of

message is set with -size 1000 77000 4000, which selects

messages of sizes between about 1K and 80K, sampled every

4000 bytes. These tests provide a picture of the best

achievable bandwidth performance. More realistic tests can

be performed by using -cachesize (to force the use of different

data areas), -overlap (for communication and computation

overlap), -async (for nonblocking communications), and

-vector (for noncontiguous communication). Using -givedy

gives information on the range of performance, displaying

both the mean and worst-case performance.

VI. PERFORMANCE PROBLEMS

One common problem with simple performance

measurement programs is that the results are different each

time the program is run, even on the same system. A number

of factors are responsible, ranging from assuming that the

clock calls have no cost and infinite resolution to the effects of

other jobs running on the same machine. A good performance

test will give the same (to the clock’s precision) answer each

time. The mpptest and goptest programs distributed with

MPICH compute the average time for a number of iterations

of an operation (thus handling the cost and granularity of the

clock) and then run the same test over several times and take

the minimum of those times (thus reducing the effects of other

jobs). The programs can also provide information about the

mean and worst-case performance. More subtle are issues of

which test to run. The simplest “ping-pong” test, which sends

the same data (using the same data buffer) between two

processes, allows data to reside.

VIII. CONCLUSIONS AND FUTURE WORKS

For efficient implementation of ES-MPICH2, it is

important for the point multiplication algorithm and the

underlying field arithmetic to be efficient. There are different

methods for efficient implementations like AES, 3DES and

ECC suited for different software configurations.

Implementation of ECC using projective coordinates has

shown considerable improvement in efficiency compared to

the affine coordinate implementation. This improvement in

efficiency is due to the key size and resistance against attacks

and run much faster than the modular reduction in prime field.

The current version of ES-MPICH2 is focused on securing

the transmission control protocol (TCP) connections on the

internet, because we addressed the data confidentiality issues

on geographically distributed cluster computing systems. In

addition to the MPI library, other parallel programming

libraries will be investigated. Candidate libraries include the

shared memory access library and the remote direct memory

access library. We plan to provide confidentiality services in

the SHMEM and RDMA libraries. A third promising

direction for further work is to integrate encryption and

decryption algorithms in other communication channels like

SHMEM and InfiniBand in MPICH2 because an increasing

number of commodity clusters are built using standalone and

advanced networks such as Infiniband and Myrinet. So far,

our study has been restricted to a fairly small platform which

consists of 8 nodes. In the future, we plan to use larger clusters

to study various aspects of our designs regarding scalability.

Another direction we are currently pursuing is to provide

support for MPI-2 functionalities such as one-sided

communication using RDMA and atomic operations in

InfiniBand. We are also working on how to support efficient

collective communication on top of InfiniBand.

REFERENCES

1. Darrel Hankerson, Julio Lopez Hernandez, Alfred Menezes, Software

Implementation of Elliptic Curve Cryptography over Binary Fields,

2000.

2. M. Brown, D. Hankerson, J. Lopez, A. Menezes, Software

Implementation of the NIST Elliptic Curves Over Prime Fields, 2001.

3. Certicom, Standards for Efficient Cryptography, SEC 1: Elliptic Curve

Cryptography, Version 1.0, September 2000

4. Certicom, Standards for Efficient Cryptography, SEC 2:

Recommended Elliptic Curve Domain Parameters, Version 1.0,

September 2000.

5. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone,

Handbook of Applied Cryptography, CRC Press, 1996

6. D.E. Denning, “Secure Personal Computing in an Insecure Network,”

Comm. ACM, vol. 22, no. 8, pp. 476-482, 1979.

7. J.J. Dongarra, S.W. Otto, M. Snir, and D. Walker, “An

8. Introduction to the Mpi Standard,” technical report, Knoxville, TN,

1995.

9. W. Ehrsam, S. Matyas, C. Meyer, and W. Tuchman, “A Cryptographic

Key Management Scheme for Implementing the Data Encryption

Standard,” IBM Systems J., vol. 17, no. 2, pp. 106- 125, 1978.

10. I.F. Blake, G. Seroussi, and N.P. Smart, Elliptic Curves in

Cryptography. Cambridge Univ. Press, 1999.

11.] I. Foster, N.T. Karonis, C. Kesselman, G. Koenig, and S. Tuecke, “A

Secure Communications Infrastructure for High-Performance

Distributed Computing,” Proc. IEEE Sixth Symp. High Performance

Distributed Computing, pp. 125-136, 1996

12. A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E.L. Lusk, W.

Saphir, T. Skjellum, and M. Snir, “Mpi-2: Extending the

Message-Passing Interface,” Proc. Second Int’l Euro-Par Conf. Parallel

Processing (Euro-Par ’96), pp. 128-135, 1996.

13. R. Grabner, F. Mietke, and W. Rehm, “Implementing an mpich-2

Channel Device over Vapi on Infiniband,” Proc. 18th Int’l Parallel and

Distributed Processing Symp., p. 184, Apr. 2004.

14. W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High- Performance,

Portable Implementation of the Mpi Message Passing Interface

Standard,” Parallel Computing, vol. 22, no. 6, pp. 789-828, 1996.

15. P. Hamalainen, M. Hannikainen, T. Hamalainen, and J. Saarinen,

“Configurable Hardware Implementation of Triple-des Encryption

Algorithm for Wireless Local Area Network,” Proc. IEEE Int’l Conf.

Acoustics, Speech, and Signal Processing (ICASSP ’01), pp.

1221-1224, 2001.

16. G.A. Koenig, X. Meng, A.J. Lee, M. Treaster, N. Kiyanclar, and W.

Yurcik, “Cluster Security with Nvisioncc: Process Monitoring by

Leveraging Emergent Properties,” Proc. IEEE Int’l Symp. Cluster

Computing and Grid (CCGrid ’05), 2005.

17. M. Lee and E.J. Kim, “A Comprehensive Framework for Enhancing

Security in Infiniband Architecture,” IEEE Trans. Parallel Distributed

Systems, vol. 18, no. 10, pp. 1393-1406, Oct. 2007.

18. J. Liu, W. Jiang, P. Wyckoff, D.K. Panda, D. Ashton, D. Buntinas, W.

Gropp, and B. Toonen, “Design and Implementation of Mpich2 over

Infiniband with rdma Support,” Proc. 18th Int

19. Greg Burns, Raja Daoud, and James Vaigl. LAM: An open cluster

environment for MPI. In John W. Ross, editor, Proceedings of

Supercomputing Symposium ’94, pages 379–386. University of

Toronto, 1994.

