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Abstract— In the concept of Message Passing Interface (MPI) 

chatting and file transmission the decryption part will be done 

automatically. Here three types of keys are used; they are public, 

private and secret key. Keys are displayed to the destination only if 

they accept the request or else displaying of key is not possible in 

the destination side and also it won’t give or establish the 

Connection. In largely spread clusters, computing nodes are 

naturally deployed in a variety of computing sites. The 

Information processed in a spread cluster is communal among a 

group of distributed processes or client by high-quality of 

messages passing protocols (e.g. message passing interface - MPI) 

running on the Internet. Because of the open available nature of 

the Internet, data encryption for these large-scale distributed 

clusters becomes a non-trivial and challenging problem. We 

improved the security of the MPI protocol by encrypting and 

decrypting messages sent and received among computing nodes. 

We are listening carefully on MPI rather than more protocols 

because MPI is one of the most accepted communication 

protocols for cluster computing environments. From among a 

multiple of MPI implementations, we selected MPICH2 developed 

by the Argonne National Laboratory. Design goal of MPICH2 - a 

commonly use MPI implementation - is to join portability with 

high presentation. we gives a security enhanced MPI-library with 

the standard MPI interface, data communications of a 

conservative MPI program can be secured without converting the 

program into the corresponding secure report. We included 

encryption algorithms into the MPICH2 library so that data in 

secret of MPI applications could be readily preserved without 

require modifying the source codes of the MPI applications. This 

system use Sandia Micro Benchmark and Intel MPI Benchmarks 

to evaluate and compared the performance of original MPICH2 

and Enhanced Security MPICH2. According to the performance 

estimation, ES-MPICH2 provides protected Message Passing 

Interface by give up sensible system performance. 
 

Index Terms— Secret key, Encryption, MPI, Parallel 

Computing, Cryptosystem  

I. INTRODUCTION 

In unclustered networks, the data encryption for large 

scale distributed clusters becomes a non trivial and 

challenging problem, due to the open accessible nature of the 

internet. Information processed in a distributed cluster is 

shared among a group of distributed processes or users by 

virtue of Message Passing protocols (e.g. Message Passing 

Interface -MPI) running on the internet. To combine the 

portability with high performance the ES-MPICH2 with the 

original MPICH2 version is used for incurring the overhead 

by the confidentiality services. Due to high performance 

clusters, the security overhead can be reduced in 
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ES-MPICH2. To preserve the data confidentiality, the 

encryption algorithm can be integrated into the MPICH2 

library. To encode messages using Advanced Encryption 

Standard (AES), Triple Data Encryption Standard (3DES) 

and Elliptic Curve Cryptography (ECC) are the three 

cryptographic techniques used in Message Passing Interface 

system to provide a data confidentiality for several computing 

nodes.  

     It is a nontrivial and challenging problem to offer 

confidentiality services for large-scale distributed clusters, 

because there is an open accessible nature of the open 

networks. To address this issue, we enhanced the security of 

the MPI protocol by encrypting and decrypting messages sent 

and received among computing nodes. Numerous scientific 

and commercial applications running on clusters were 

developed using the MPI protocol. Among a variety of MPI 

implementations, we picked MPICH2 developed by the 

Argonne National Laboratory. The design goal of 

MPICH2—a widely used MPI implementation— is to 

combine portability with high performance. We integrated 

encryption algorithms into the MPICH2 library. Thus, data 

confidentiality of MPI applications can be readily preserved 

without a need to change the source codes of the MPI 

applications 

A. Possible Approaches 

There are three possible approaches to improving security 

of MPI applications. In first approach, application 

programmers can add source code to address the issue of 

message confidentiality. For example, the programmers may 

rely on external libraries (e.g., SEAL [26] and Nexus [11]) to 

implement secure applications. Such an application-level 

security approach not only makes the MPI applications error 

prone, but also reduces the portability and flexibility of the 

MPI applications. In the second approach, the MPI interface 

can be extended in the way that new security-aware APIs are 

designed and implemented .This MPI-interface-level solution 

enables programmers to write secure MPI applications with 

minimal changes to the interface. Although the second 

approach is better than the first one, this MPI-interface-level 

solution typically requires an extra code to deal with data 

confidentiality. The third approach—a channel-level 

solution—is proposed in this study to address the drawbacks 

of the above two approaches. Our channel-level solution aims 

at providing message confidentiality in a communication 

channel that implements the Channel Interface 3 (CH3) in 

MPICH2 
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B. Contributions 

The three major contributions of this study includes 

 We implemented a standard MPI mechanism called 

ES-MPICH2 to offer data confidentiality for secure 

network communications in message passing 

environments. Our proposed security technique 

incorporated in the MPICH2 library can be very useful 

for protecting data transmitted in open networks like the 

Internet. 

 The ES-MPICH2 mechanism allows application 

programmers to easily write secure MPI applications 

without additional code for data-confidentiality 

protection. We seek a channel-level solution in which 

encryption and decryption functions are included into the 

MPICH2 library. Our ES-MPICH2 maintains a standard 

MPI interface to exchange messages while preserving 

data confidentiality. 

 The implemented ES-MPICH2 framework provides  

Secured configuration file that enables application 

programmers to selectively choose any cryptographic 

algorithm and  symmetric-key in ES-MPICH2. This 

feature makes it possible for programmers to easily and 

fully control the security services incorporated in the 

MPICHI2 library. To demonstrate this feature, we 

implemented the AES, 3DES and ECC algorithms in 

ESMPICH2. We also show in this paper how to add other 

cryptographic algorithms into the ES-MPICH2 

framework. 

II. RELATED WORK 

Due to an increasing number of commodity clusters 

connected to each other by public networks, the encrypting 

and decrypting messages sent and received among computing 

nodes are not efficient and the data confidentiality is not 

readily preserved. So to implement secure applications, the 

programmers may rely on external libraries (e.g. SEAL [26] 

and NEXUX [11]).There is a minimal changes to the interface 

to write the secure MPI applications and the calculation time 

and memory needs for larger key sizes are more in the popular 

asymmetric cryptosystems like RSA.  

III. ENHANCED SECURITY – MPICH2 

To offer data confidentiality for secure network 

communications in message passing environments, a standard 

MPI mechanism called ES-MPICH2 was introduced. This 

proposed security technique incorporated in the MPICH2 

library can be very useful for protecting data transmitted in 

open networks like the Internet. The ES- MPICH2 mechanism 

allows application programmers to easily write secure MPI 

applications without any additional code for 

data-confidentiality protection. We seek a channel-level 

solution in which encryption and decryption functions are 

included into the MPICH2 library. Thus the ES-MPICH2 

maintains a standard MPI interface to exchange messages 

while preserving data confidentiality. ES-MPICH2 

framework provides a secured configuration file that enables 

application programmers to selectively choose any 

cryptographic algorithm. It provides easy and full control of 

security services. AES, 3DES and ECC   algorithms are used 

in ESMPICH2. 

A. Scope of ES- MPICH2 

Confidentiality, integrity, availability, and authentication 

are four important security issues to be addressed in clusters 

connected by an unsecured public network. Rather than 

addressing all the security aspects, we pay particular attention 

to confidentiality services for messages passed among 

computing nodes in an unsecured cluster. 

Although preserving confidentiality is our primary 

concern, an integrity checking service can be readily 

incorporated into our security framework by applying a 

public-key cryptography scheme. In an MPI framework 

equipped with the public-key scheme, sending nodes can 

encode messages using their private keys. In the message 

receiving procedure, any nodes can use public keys 

corresponding to the private keys to decode messages. If one 

alters the messages, the ciphertext cannot be deciphered 

correctly using public keys corresponding to the private keys. 

Thus, the receiving nodes can perform message integrity 

check without the secure exchange of secret keys.  

B. Design structure of ES- MPICH2 

One of the objectives in MPICH2 design is portability. To 

facilitate porting MPICH2 from one platform to another, 

MPICH2 uses ADI3 (the third generation of the Abstract 

Device Interface) to provide a portability layer. ADI3 is a 

full-featured abstract device interface and has many functions, 

so it is not a trivial task to implement all of them. To reduce 

the porting effort, MPICH2 introduces the CH3 interface. 

CH3 is a layer that implements the ADI3 functions, and 

provides an interface consisting of only a dozen functions. A 

“channel” implements the CH3 interface. Channels exist for 

different communication architectures such as TCP sockets, 

SHMEM, etc. Because there are only a dozen functions 

associated with each channel interface, it is easier to 

implement a channel than the ADI3 device. 

The hierarchical structure of MPICH2, as shown in 

Figure1, gives much flexibility to implementers. The three 

interfaces (ADI3, CH3, and RDMA Channel Interface) 

provide different trade-offs between communication 

performance and ease of porting. As a successor of MPICH, 

MPICH2 [1] aims to support not only the MPI-1 standard, but 

also functionalities such as dynamic process management, 

one-sided communication and MPI I/O, which are specified 

in the MPI-2 standard. 

 
Fig 1. ES- MPICH2 implementation structure 
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However, MPICH2 is not merely MPICH with MPI-2 

extensions. It is based on a completely new design, aiming to 

provide more performance, flexibility and portability than the 

original MPICH2. The future development for MPICH, 

including those necessary to accommodate extensions to the 

MPI Standard now being contemplated by the MPI Forum.  

The process of creating a standard to enable portability of 

message-passing applications codes began at a workshop on 

Message Passing Standardization and the Message Passing 

Interface (MPI). Confidentiality, integrity, availability, and         

authentication are four important security issues to be 

addressed in clusters connected by an unsecured public 

network. Rather than addressing all the security aspects, we 

pay particular attention to confidentiality services for 

messages passed among computing nodes in an unsecured 

cluster. Although preserving confidentiality is our primary 

concern, an integrity checking service can be readily 

incorporated into our security framework by applying a 

public-key cryptography scheme. 

IV. IMPLEMENTATION DETAILS 

During the implementation, the system involves Key 

Agreement, Advanced Encryption Standard, Triple Data 

Encryption Standard, Elliptic Curve Cryptography, File 

Chatting and File Sharing.  Figure 2 depicts the 

implementation structure of ES-MPICH2, where a 

cryptosystem is implemented in the TCP socket layer. Thus 

the messages are encrypted and decrypted in the TCP socket 

channel rather than the ADI3 and CH3 layers. We addressed 

1. In which layer should we implement cryptographic 

algorithms? 

2. Which cryptosystem should we choose to implement? 

3. How to implement secure key management? 

 
 

Fig 2. Implementation structure of ES-MPICH2 in which 

the cryptosystem is implemented in the TCP socket layer 

for complete transparency. 

A. Key Agreement 

In Key Agreement, the Diffie–Hellman key exchange 

algorithm is used that establishes a shared secret that can be 

used for secret communications by exchanging data over a 

public network. Figure 3 presents the key agreement 

infrastructure using Arithmetic XOR operations (e.g. 1 0→ 

1). The terminal A and terminal B can share their secret keys 

by using hash functions. The positive response (e.g. 1) can be 

saved in the source side. The positive acknowledgement can 

be stored in the destination side. Thus the secret 

communications is done by accepting the secret key in the 

destination side and if it is matched send the 

acknowledgement to the destination side. 

B. Advanced Encryption Standard 

AES is based on a design principle known as a 

substitution-permutation network, and is fast in both software 

and hardware. Unlike its predecessor DES, AES does not use 

a Feistel network. AES is a variant of Rijndael which has a 

fixed block size of 128 bits, and a key size of 128, 192, or 256 

bits. By contrast, the Rijndael specification per se is specified 

with block and key sizes that may be any multiple of 32 bits, 

both with a minimum of 128 and a maximum of 256 bits.  

   AES operates on a 4×4 column-major order matrix of bytes, 

termed the state, although some versions of Rijndael have a 

larger block size and have additional columns in the state. 

Most AES calculations are done in a special finite field.  

 
Fig 3 Key Agreement using XOR operations for sharing 

secret keys. 
 

   The key size used for an AES cipher specifies the number of 

repetitions of transformation rounds that convert the input, 

called the plaintext, into the final output, called the cipher 

text. The numbers of cycles of repetition are as follows: 

 10 cycles of repetition for 128 bit keys. 

 12 cycles of repetition for 192 bit keys. 

 14 cycles of repetition for 256 bit keys. 

    Each round consists of several processing steps, including 

one that depends on the encryption key itself. A set of reverse 

rounds are applied to transform cipher text back into the 

original plaintext using the same encryption key. 

    Figure 4 depicts the internal operations of Advanced 

Encryption Standard in which each round consists of four 

special functions. They are  

 Byte Substitution 

 Permutation 

 Arithmetic operations over a finite field 

 XOR with a key 

        These transformations are applied to a 128-bit input 

block in a certain sequence to perform an AES encryption or 

decryption. In both cases, the transformations are grouped to 

so-called rounds. There are three different types of rounds, 

namely, the initial round, the normal round, and the final 

round. AES is a symmetric block 

cipher. It acts as a resistance 

against all known attacks. 

http://en.wikipedia.org/wiki/Key_size
http://en.wikipedia.org/wiki/Column-major_order
http://en.wikipedia.org/wiki/Finite_field_arithmetic
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 In a wide range of platforms, the AES has speed and code 

compactness.  The key unit is used to store keys and to 

calculate the key expansion function. Due to the fact that the 

AES is standardized for 128, 192, and 256-bit keys, the 

interface between the key unit and the data unit is designed for 

the key expansion for several different key sizes can be 

implemented on the same chip. It is the preferred algorithm 

for implementations of cryptographic protocols. 

 
Fig 4 Internal operations of Advanced Encryption 

Standard. 

C. Triple Data Encryption Standard 

The original DES cipher's key size of 56 bits was generally 

sufficient when that algorithm was designed, but the 

availability of increasing computational power made 

brute-force attacks feasible. Triple DES provides a relatively 

simple method of increasing the key size of DES to protect 

against such attacks, without the need to design a completely 

new block cipher algorithm. Triple DES uses a "key bundle" 

which comprises three DES keys, K1, K2 and K3, each of 56 

bits (excluding parity bits).  Figure 5 depicts the internal 

operation of Triple Data Encryption Standard in which it has 

three keys (56 x 3 = 168 bits) for encryption and decryption. 

 
Fig 5 Internal operation of Triple Data Encryption 

Standard. 

 

The encryption algorithm is: 

Cipher text = EK3(DK2(EK1(plaintext)))  

 i.e., DES encrypts with K1, DES decrypt with K2, then DES 

encrypt with K3.Decryption is the reverse:  

Plaintext = DK1(EK2(DK3(cipher text))) 

i.e., decrypt with K3, encrypt with K2, and then decrypt with 

K1. 

D. Elliptic Curve Cryptography 

Elliptic curve cryptography (ECC) is an approach to 

public-key cryptography based on the algebraic structure of 

elliptic curves over finite fields. Popular asymmetric 

cryptosystems like RSA are known to be very costly 

concerning calculation time and memory needs for larger key 

sizes. To solve this problem, elliptic curve cryptosystems 

based can be used.  

   An elliptic curve cryptosystem is an asymmetric 

cryptosystem relying on the hardness of the discrete logarithm 

problem in elliptic curve groups With ECIES encryption, it is 

possible to encrypt data with a 160-bit key as secure as with 

RSA using a 1024-bit key. So ECIES encryption is the better 

choice compared to RSA when calculation time and available 

memory are restricted, e.g. when using cryptosystems on 

smartcards 

 
Fig 6 Internal operation of Elliptic Curve Cryptography 

 

The Elliptic Curve Integrated Encryption Scheme 

(ECIES), also known as Elliptic Curve Augmented 

Encryption Scheme or simply the Elliptic Curve Encryption 

Scheme.   

  Figure 6 depicts the internal operations of Elliptic Curve 

Cryptography in which two parity cells are added and 

compared and if it is accepted then no error is found if it is not 

accepted then the error is detected by the Error Correction 

Unit. 

V. BENCHMARKS FOR POINT TO POINT 

OPERATIONS 

In this section we present some of the simplest 

benchmarks for performance of MPICH on various platforms. 

The performance test programs mpptest and goptest can 

produce a wealth of information; the script basetest, provided 

with the MPICH implementation, can be used to get a more 

complete picture of the behavior of a particular system. Here, 

we present only the most basic 

data: short- and long-message 

performance. 



International Journal of Science and Modern Engineering (IJISME) 

ISSN: 2319-6386, Volume-1 Issue-4, March 2013    
 

10 

Published By: 

Blue Eyes Intelligence Engineering  

& Sciences Publication  

Retrieval Number: D0165031413/2013©BEIESP 

 For the short-message graphs, the only options used with 

mpptest are -auto and –size 0 1000 40. The option -auto tells 

mpptest to choose the sizes of the messages so as to reveal the 

exact message size where there is any sudden change in 

behavior (for example, at an internal packet-size boundary). 

The -size option selects messages with sizes from 0 to 1000 

bytes in increments of 40 bytes. The short-message graphs 

give a good picture of the latency of message passing.  

For the long-message graphs, a few more options are used. 

Some make the test runs more efficient. The size range of 

message is set with -size 1000 77000 4000, which selects 

messages of sizes between about 1K and 80K, sampled every 

4000 bytes. These tests provide a picture of the best 

achievable bandwidth performance. More realistic tests can 

be performed by using -cachesize (to force the use of different 

data areas), -overlap (for communication and computation 

overlap), -async (for nonblocking communications), and 

-vector (for noncontiguous communication). Using -givedy 

gives information on the range of performance, displaying 

both the mean and worst-case performance.         

VI. PERFORMANCE PROBLEMS 

One common problem with simple performance 

measurement programs is that the results are different each 

time the program is run, even on the same system. A number 

of factors are responsible, ranging from assuming that the 

clock calls have no cost and infinite resolution to the effects of 

other jobs running on the same machine. A good performance 

test will give the same (to the clock’s precision) answer each 

time. The mpptest and goptest programs distributed with 

MPICH compute the average time for a number of iterations 

of an operation (thus handling the cost and granularity of the 

clock) and then run the same test over several times and take 

the minimum of those times (thus reducing the effects of other 

jobs). The programs can also provide information about the 

mean and worst-case performance. More subtle are issues of 

which test to run. The simplest “ping-pong” test, which sends 

the same data (using the same data buffer) between two 

processes, allows data to reside. 

VIII.  CONCLUSIONS AND FUTURE WORKS 

For efficient implementation of ES-MPICH2, it is 

important for the point multiplication algorithm and the 

underlying field arithmetic to be efficient. There are different 

methods for efficient implementations like AES, 3DES and 

ECC suited for different software configurations. 

Implementation of ECC using projective coordinates has 

shown considerable improvement in efficiency compared to 

the affine coordinate implementation. This improvement in 

efficiency is due to the key size and resistance against attacks 

and run much faster than the modular reduction in prime field. 

The current version of ES-MPICH2 is focused on securing 

the transmission control protocol (TCP) connections on the 

internet, because we addressed the data confidentiality issues 

on geographically distributed cluster computing systems. In 

addition to the MPI library, other parallel programming 

libraries will be investigated. Candidate libraries include the 

shared memory access library and the remote direct memory 

access library. We plan to provide confidentiality services in 

the SHMEM and RDMA libraries. A third promising 

direction for further work is to integrate encryption and 

decryption algorithms in other communication channels like 

SHMEM and InfiniBand in MPICH2 because an increasing 

number of commodity clusters are built using standalone and 

advanced networks such as Infiniband and Myrinet. So far, 

our study has been restricted to a fairly small platform which 

consists of 8 nodes. In the future, we plan to use larger clusters 

to study various aspects of our designs regarding scalability. 

Another direction we are currently pursuing is to provide 

support for MPI-2 functionalities such as one-sided 

communication using RDMA and atomic operations in 

InfiniBand. We are also working on how to support efficient 

collective communication on top of InfiniBand. 
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