
International Journal of Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-1 Issue-6, May 2013

26

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F0296051613/2013©BEIESP



Abstract— SQL injection attacks are more dangerous than

other web attacks because these attacks can get sensitive data

stored in the database by manipulating the original SQL queries.

In spite of different tools and frameworks to detect and prevent

SQL Injection, it is still a top most threat to web applications. In

this paper, we provide detailed survey of different coding

techniques along with recent trends in detecting and preventing

SQLIAs’ that can be used to develop secured web applications.

Index Terms— Web applications, SQL Injections.

I. INTRODUCTION

Nowadays, web applications are more prevalent around

the world. More and more companies and organizations use

web applications to provide various services to users. Web

applications receive users’ requests from the browser,

interact with the database, and return relevant data for users.

Fig. 1. Structure of Web Application

(REQUEST/RESULT)

The back-end database often contains sensitive user data

that interest attackers. To compromise a database, SQL

injection is one of the techniques used by attackers. These

attacks exploit vulnerabilities existing in web applications. It

allows attackers to inject harmful SQL query segments in the

application oriented queries, so that attackers can obtain

unauthorized access to a database. This unauthorized user can

read or modify existing data, make the data unavailable to

other users, or even corrupt the database server. According to

OWASP report released in 2013, Injection attacks are

top most threat to Web applications [1]. Web applications

and their underlying databases require not only careful

configuration and programming to assure security, but also

Manuscript received May 01, 2013.

 Mr.Vinod Kumar Kottem, Computer Science and Engineering, Sree
Vidyanikethan Engineering College, Tirupathi, A.P, India.

Prof. Jatin Das .D, Computer Science and Engineering, Sree

Vidyanikethan Engineering College, Tirupathi, A.P, India

effective protection mechanisms to prevent attacks.

Researchers have proposed various solutions and techniques

to address the SQL injection problems. However, there

are many solutions that can prevent SQLIAs, but researchers

are more interested in analysing and detecting the SQLIAs.

This research will present a survey of different advanced

SQLIAs detecting, preventive and efficient coding

techniques to avoid SQL Injection attacks in Web

applications.

II. BACKGROUND

I. Web Application Environment

Web application data is presented to the Server by the

client, in the form of forms, cookies and URLs’ using

different methods. These inputs contains both logical data for

the application and the queries those applications send to a

database to extract relevant data.

Present, Web applications do not adequately validate

clients input with respect to SQL injection. Using those flaws

in the application attackers attempt to get sensitive

information about the users from the databases other than

what the application intended.

II. Overview of SQL Injection Attack

SQL injection attacks are nothing but injecting malicious

queries by the attacker into the application intended queries

to get the desired outputs from the database.

The following code explains SQL injection attack using

tautology.

"SELECT * FROM users WHERE name = '" + userName + "';"

Instead of providing genuine user_name, attacker uses the

following code to manipulate the original query.

‘or ‘1’=’1’—‘

Now the meaning of the manipulated query will be

"SELECT * FROM users WHERE name = '‘ or ‘1’=’1’—‘';"

The term, ' or 1=1 --, does two things. First, it causes the

first term in the SQL statement to be true for all rows of the

query; second, the -- causes the rest of the statement to be

treated as a comment and, therefore, ignored. The result is

that all the details in the database, up to the limit the Web

page will list, are returned. This is a very basic injection

attack. The hardcore attackers would use very logical and

efficient ‘terms’ to get the desired output.

Advanced Detecting and Defensive Coding

Techniques to prevent SQLIAs in Web

Applications: A Survey

Vinod Kumar .K, Jatin Das .D

Advanced Detecting and Defensive Coding Techniques to prevent SQLIAs in Web Applications: A Survey

27

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F0296051613/2013©BEIESP

III. TYPES OF SQL INJECTION ATTACKS

Generally SQLIAs’ are classified into three types,

In-Band, Out-Of-Band, Inference. In-Band attacks are those

attacker interacts with the website or web application

directly, where as Out-Of-Band attacks are those which uses

third party data to attack a web application. Most of the SQL

injection attacks fall into these categories. The SQL injection

attacks can best be understood through a variety of examples

demonstrating the various SQL injection attacks [2].

TABLE I- Types of SQLIA’s
Type of

Attack

Procedure

Tautologies
SQL injection codes are injected into one or more
conditional statements so that they are always

evaluated to be true

Union Query

Injected query is joined with a safe query using the

keyword UNION in order to get information related to
other tables from the application

Logically

Incorrect
Queries

Using error messages rejected by the database to find

useful data facilitating injection of the backend
database.

Stored
Procedure

Many databases have built-in stored procedures. The

attacker executes these built-in functions using
malicious SQL Injection codes.

Piggy-Backed
Queries

Inserting two or more queries into one query

Inference
- Blind

Injection

- Timing

Attacks

An attacker derives logical conclusions from the
answer to a true/false question concerning the

database.

- Information is collected by inferring from the replies
of the page after questioning the server true/false

questions.

- An attacker collects information by observing the
response time of the database.

A. Tautologies

This attack works by inserting an “always true”

statement into a WHERE clause to extract data. These are

often used in combination with the insertion of a – to cause

the remainder of a statement to be ignored ensuring

extraction of largest amount of data. Tautological injections

can be string type or numerical type or comment type

expression-snippets, as demonstrated by the following

examples:

Fig. 2. Normal Output for given input

Numerical : ‘101’ OR ‘1’=‘1’

String : ‘vinod’ OR ‘x’=‘x’

Comments: ‘101’ OR ‘1’=‘1- -’

 Injection Example:

Query: “select x,y,z from emp where e_code=”+lvalue+” “

Input: ‘255’ OR ‘1’=’1‘

Query: “select x,y,z from emp where e_code= ‘255’ OR

‘1’=’1‘ “

Fig. 3.Exploited Output for Malicious input

B. Union Query

This attack exploits a vulnerable parameter by injecting a

statement of the form:

SELECT * FROM users WHERE login=’’ UNION

 SELECT Phno from emp where e_code= ‘255’ OR ‘1’=‘1- -’’

AND pass=’’

The attacker can insert any appropriate query to retrieve

information from a table different from the one that was the

target of the original statement. The database returns a dataset

that is the union of the results of the original first query and

the results of the injected second query.

In the above query the italicized code is an example for

union type of injection. The original application query is

intended to get the ‘e_code’, ‘e_name’, ‘mail’ from ‘user’

table ,but the attacker injected UNION query to get the phone

numbers of the employee from ‘emp’ table. The example

show here is simple union query but they should meet

minimum criteria.

C. Illegal/Logically Incorrect Queries

Attackers use different queries to get information from

about the type of database used by the web application and

structure of the application, sometimes schemas. In the first

phase attacker gather information about the backend of the

application by errors generated i.e., syntactic error reports. In

the second phase attacker write logical queries by using holes

in the applications that were discovered in phase-I.

Even though attacker uses Tautological class of

queries but these types of attacks differ from the original

Tautological attacks. Approach to find holes in the web

application is different. In Fig.2 the input value must be a

integer value, the attacker uses Logically Incorrect Method to

exploit the application error information by providing a

String values to the input.

Then the application returns an error message stating

that input must be a integer value along with the database

name, table name, and schema information.

International Journal of Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-1 Issue-6, May 2013

28

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F0296051613/2013©BEIESP

Fig. 4. Example for logical incorrect attack (Exploited

Page)

. Using the error information the attacker can use another type

of SQLIAs to exploit the web application.

D. Stored Procedure Attacks

Stored Procedures are used to run dynamic SQL

queries. These attacks attempt to execute stored procedures.

The attacker initially determines the database type and then

uses that knowledge to determine what stored procedures

might exist. Stored procedures can be susceptible to privilege

escalation, buffer overflows, and even provide access to the

operating system.

E. Piggy‐Backed Queries

In this attack, an attacker tries to inject additional queries

into the original query. As a result, the database receives

multiple SQL queries. The first is the intended query which is

executed as normal; the subsequent ones are the injected

queries, which are executed in addition to the first. This type

of attack can be extremely harmful. If successful, attackers

can insert any type of SQL command. Vulnerability to this

type of attack often allows multiple statements to be

contained in a single string.

Example: If the attacker inputs “’; drop table emp ‐ ‐” into

the pass field, the application generates the query:

SELECT x, y, z FROM emp WHERE e_code=’255’’; drop table emp‐‐
’

Fig. 5. Example for Piggy-backed queries

F. Inference

Inference is considered to be a advanced SQL

injection attack. These types of attack create queries that

because an application or database to behave differently

based on the result of the query. These attacks allow an

attacker to extract data from the database and detect

vulnerable parameter. There are to well-known attack

techniques based on inference: blind-injection and timing

attacks.

a. Blind-injection

An attacker performs queries that have a Boolean result. If

the answer is true then the application behaves correctly and

if the answer is false then it cause an error. So attacker can get

the indirect response from database.

Scenario: Employee checks his/her count of leaves by

entering his/her id.

Fig. 6. Exploiting a page using inference attacks

Even though generic error pages were defined, the attacker

exploits application blindly.

 SELECT COUNT FROM leave WHERE emp_id=‘255' and

SUBSTRING (SYSTEM_USER,1,1)='a‘ (False)

SELECT COUNT FROM leave WHERE emp_id=‘255' and

SUBSTRING (SYSTEM_USER,1,1)='b‘ (False)

SELECT COUNT FROM leave WHERE emp_id=‘255' and

SUBSTRING (SYSTEM_USER,1,1)=‘v' (True)

After 22
nd

 attempt the attacker gets response from the

application, by that he can know that employee name starts

with ‘v’. Similarly he can find other information by querying

the application blindly.

b. Timing attacks

In this attack attacker observe the database delays in the

database response and gather the information. To perform the

timing attack attacker writes the query in the form of an

if-then statement and then uses the WAITFOR keyword in

one of the branch, which causes the database to delay its

response by specified time.

IV. REVIEW OF RECENT TRENDS IN DETECTION

AND PREVENTIVE TECHNIQUES

In this section, let us see the on-going and past few years

research work to analyse, detect and prevent SQLIAs.

A. “The Design of SQL Injection Analysis System

based on Honeynet” (Zelong Yin, Zhen Niu and

Feifan Tong)-(2013)

Zelong Yin, Zhen Niu and Feifan Tong designed an SQL

injection attack analysis system by merging Honeynet

technology with SQL Injection principle [3]. Honeynet is a

technology for data control and data capture mechanism

includes one or more honey pots.

Advanced Detecting and Defensive Coding Techniques to prevent SQLIAs in Web Applications: A Survey

29

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F0296051613/2013©BEIESP

 Initially system attracts attacks to perform SQL injection

with Honeynet, then the system filter and analyses attacks to

judge whether it is a SQL injection or not.

B. “Preventing SQL Injection with Input

Rectification” (Tiffany Bao, Steve Matsumoto, JD

Nir)-(2013)

Tiffany Bao, Steve Matsumoto, JD Nir developed an

Intrusion Detection System that will rectify the input [4].

They have clearly mentioned difference between rectification

and sanitization in the proposed system. It has three stages,

 Training

 Detecting

 Rectifying.

Automatic Input Rectification (Long et al.) is the method

used for rectifying input [5]. The developed system is very

efficient in rectifying the anonymous inputs at considerable

rate.

C. “Web Anomaly Misuse Intrusion Detection

Framework for SQL Injection Detection” (Shaimaa

Ezzat Salama, Mohamed I. Marie, Laila M.

El-Fangary & Yehia K. Helmy)-(2012)

Shaimaa Ezzat Salama, Mohamed I. Marie, Laila M.

El-Fangary & Yehia K. Helmy proposed an Intrusion

Detection system to detect SQL injections using Misuse and

Anomaly detection techniques [6]. The log queries are

converted into xml format and then association rules are

applied to retrieve relation between queries and the table

schema. These rules represent the normal behavior .Any

query that deviate these rules, considered as attack. The

system takes certain period to mature the association rules.

D. “Mining input sanitization patterns for predicting

SQL injection and cross site scripting

vulnerabilities “(Shar, L. K. and Tan, H. B. K.)

-(2012)

Shar, L. K. and Tan, H. B. K, proposed an technique to

mine both sanitized code patterns and validation code

patterns to find vulnerable inputs [7]. From that information

of existing web site or web application, vulnerability

prediction models are trained rigorously to improve

efficiency.

E. “Random4: An application Specific Randomized

Encryption Algorithm to prevent SQL injection”

(S.Avireddy at el.)- (2012)

S.Avireddy at el, proposed a secured approach using

randomized encryption algorithm [8]. Each character in input

values is substituted by one of four values stored in the

lookup table. The main intension behind assigning one of

four random values is to decrease the probability of

decrypting those values by hackers. This proposed approach

can be a better alternative for simple hash based approach.

F. “A novel method for SQL injection attack detection

based on removing SQL query attribute values ”(

Inyong Lee, Soonki Jeong , Sangsoo Yeo, Jongsub

Moon)-(2011)

Inyong Lee, Soonki Jeong, Sangsoo Yeo, Jongsub Moon

proposed a simple and effective method to detect SQL

injection attacks [9]. This detection method uses combined

static and dynamic analysis method along with SQL query

parameter removal algorithm. The parameters are separated

from the query and a generalized algorithm based on static

and dynamic analysis is used to detect whether the

parameters are genuine or infected. Because of its simple

nature, the proposed algorithm can be implemented both with

web applications and any application connected to databases.

G. "An Authentication Scheme using Hybrid

Encryption” (Indrani Balasundaram,

E.Ramaraj)-(2011)

Indrani Balasundram and E.Ramaraj proposed an

authentication scheme in which they propose an algorithm

which uses both Advance Encryption Standard (AES) and

Rivest-Shamir-Adleman (RSA) to prevent SQL injection

attacks. In this method a unique secret key is fixed or

assigned for every client or user [10]. On the server side

server uses private key and public key combination for RSA

encryption. In this method, two level of encryption is applied

on login query:

To encrypt user name and password symmetric key

encryption is used with the help of user’s secret key.

 Asymmetric encryption mechanism used for encrypting the

user values. The proposed method needs 961.88ms for

encryption or decryption and this can be negligible. It is Very

difficult to maintain every user secret key at server side and

client side. There is no security mechanism at registration

phase.

H. "Effective SQL Injection Attack Reconstruction

Using Network Recording"(Allen Pomeroy and

QingTan)-(2011)

Allen Pomeroy and Qing Tan has suggested a technique

for finding vulnerabilities in Web Application such as SQL

injection attack by network recording [11]. In this approach

network forensic techniques and tools are used to analyze the

network packets containing get and post requests of a web

application. This approach uses network based Intrusion

Detection System (IDS) to trigger network recording of

suspected application attacks.

Some disadvantages also exist with this approach:

 Difficult to record high volume traffic.

 Packet fragmentation attack could bypass this

approach.

I. "Dynamic Candidate Evaluations Approach to

prevent SQL injection"(P. Bisht, P. Madhusudan,

and V. N. Venkatakrishnan) -(2010)

Prithvi Bisht and his team members propose a tool called

Candidate evaluation for Discovering Intent Dynamically

(CANDID) [12]. This method record the

programmer-intended SQL query structure on any

input(candidate inputs) from the legitimate user and compare

this with the query structure generated with the attackers

input. Some disadvantages also exist with this approach are:

• Developer learning is required.

• It is not possible to make a complete set of legitimate inputs

for a large web application.

International Journal of Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-1 Issue-6, May 2013

30

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F0296051613/2013©BEIESP

J. "Obfuscation-based Analysis of SQL Injection

Attacks"(Raju Halder and Agostino Cortesi)(2010)

In this method an obfuscation/de-obfuscation based

technique is proposed to detect SQL Injection Attacks

(SQLIA) in a SQL query before sending it to database [13].

This technique has three phases:

 Static phase: In the static phase, the SQL Queries in

the web application code are replaced by queries in

obfuscated form.

 Dynamic Phase: In this phase user inputs are merged

with the obfuscated query at run-time. After

merging, dynamic verifier checks the obfuscated

query at atomic formula level to detect the SQL

injection attack.

 If no SQL injection found during the verification

phase reconstruction of the original query from the

obfuscated query is carried out before submitting it

to the database.

K. "SQL injection Detection via Automatic Test Case

Generation of Programs" (Michelle Ruse,

TanmoySarkar, Samik Basu)-(2010).

This approach uses automatic test case generation to detect

SQL Injection Vulnerabilities [14]. The main idea behind this

framework is based on creating a specific model that deals

with SQL queries automatically. It also captures the

dependencies between various components of the query. The

used CREST(Automatic Test Generation Tool for C)

test-generator and identify the conditions in which the

queries are vulnerable. Based on the results, the methodology

is shown to be able to specifically identify the causal set and

obtain 85% and 69% reduction respectively while

experimenting on few sample examples.

L. "Combinatorial Method for Preventing SQL

Injection Attacks" (R. Ezumalai, G. Aghila)-(2009)

This approach uses both static and dynamic approach to

detect SQL injection. It is a signature based SQL injection

detection technique [15]. In this approach they generate

hotspots for SQL queries in web application code and divide

these hotspots into tokens and send it for validation where it

uses Hirschberg's algorithm, which is a divide and conquer

version of the Needleman-Wunsch algorithm, used to detect

SQL injection attacks. Since, it is defined at the application

level, requires no change in the runtime system, and imposes

a low execution overhead.

M. "An Approach for SQL Injection Vulnerability

Detection- AMNeSIA"(M. Junjin)-(2009)

Analysis and Monitoring for NEutralizing SQLInjection

Attacks (AMNeSIA) is a fully automated technique for

detecting and preventing SQL injection attacks [16].

It works in two phases.

 Static analysis: In this phase it analyze web

application code and automatically generate the

SQL query mode on the basis of possible legitimate

queries.

 Runtime analysis: In this phase it scan all

dynamically generated SQL queries and checks

them to be with compliance to the statically

generated models in the previous step. When this

step detects that a query is not matched with the

query model, it classifies the input as an SQL

injection attack, logs the necessary information and

throws an predefined exception that the application

can then deal with suitably.

V. DEFENSIVE CODING TECHNIQUES TO

PREVENT SQL INJECTION ATTACKS IN WEB

APPLICATIONS

According to OWASP and SANS there are certain standard

coding practices that can prevent SQLIAs with performance

as a trade-off [17][18].

A. Validate Input or Data sanitization.

Input Validation in web applications is a basic technique to

mitigate SQLIAs’. Best way to validate data is to use default

deny, regular expression. The regular expression shown

below would return only letters and numbers.
/[^0-9a-zA-z/

Similarly for checking email id which contains symbols like

@ , _ , ,the regular expression should be
/^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$/

As far as possible use numbers, numbers and letters. If there

is a need to include punctuation marks of any kind, convert

them by HTML Encoding. So that “ vinod “"” or > vinod “>”

For instance if the user is submitting the E-mail address allow

only @, -, . and _ in addition to numbers and letters to be used

and only after they have been converted to their HTML

substitutes.

Client side validation can be bypassed by the attackers, it is

better to use sever side validation mechanism by writing

filters. These filters protect the web servers from malicious

code by analyzing input parameters.

B. Binding Dynamic SQL Query parameters

Use Prepared Statements instead of using Stored Procedures

for dynamic SQL queries. Prepared Statements bind the user

inputs and compare inputs as a whole with the database

values[3]. This is one of the best practices to reduce SQLIAs’

in web applications. Example for Prepared Statements:

Statement = "SELECT * FROM User WHERE userName= ? ";

PreparedStatement ps =

con.prepareStatement(selectStatement);

ps.setString(1, userId);

ResultSet rs = ps.executeQuery();

In the above statement, if the input is ‘ or ‘1’=’1’ , this term can

not affect the original SQL query ,because the Prepared

Statement considers entire “ ‘ or ‘1’=’1’ “ as a single word and

compares that word with the usernames in the database.

Prepared Statements with “ ? “ binding variables can prevent

SQL Injection attacks .

However with the usage of Prepared Statements improperly

can lead to SQLIAs’

PreparedStatement ps = con.prepareStatement("SELECT * FROM

user WHERE userId = '+UserName+'");

The above code has same impact as explained in Tautologies

even though the query is Prepared Statement.

Advanced Detecting and Defensive Coding Techniques to prevent SQLIAs in Web Applications: A Survey

31

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F0296051613/2013©BEIESP

C. Crafting Error reports

This is the final practice during coding the web applications.

During development the web applications the custom/generic

error messages are need to be mentioned for different error

reports generated by the application. So that attacker cannot

know any information about the database.

D. Limiting user privileges

By limiting the privileges given to database accounts in an

application will reduce the amount of damage incurred by

SQL injection attacks. This includes removing admin

privileges from running web server application accounts.

Initially this may introduce some delay and increase

workload into the deployment of applications, the added

security of giving the application accounts only the required

privileges will secure the application environment to be

another deterrent for would be attackers.

VI. CONCLUSION

Though there are number of approaches for detecting

SQLIAs’ in web applications and preventive measures, still

remains as a major issue because of poor developing

strategies [2]. According to OWASP top 10 threats in 2013,

injection attacks stands first. The survey of different attacks

is summarized and different detective and preventive coding

mechanisms are explained with examples to mitigate SQL

Injection Attacks in Web Applications.

REFERENCES

1. https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Proje
ct.

2. Justin Clarke, “SQL Injection Attacks ” 2nd Edition,2012.

3. Zelong Yin, Zhen Niu and Feifan Tong (2013,March,13-15). The
Design of SQL Injection Analysis System based on Honeynet .VOL-I.

Available:

http://www.iaeng.org/publication/IMECS2013/IMECS2013_pp403-4
06.pdf

4. Tiffany Bao, Steve Matsumoto, JD Nir (2013,March,31). Preventing

SQL Injection with Input Rectification Available:
http://18739c.ece.cmu.edu/bravo-2/wp-content/uploads/sites/9/2013/0

3/report.pdf

5. Fan Long Ganesh, Carbin, Rinard,”Automatic Input
rectification”,IEEE Conf. on Software

Engineering,June-2012,pp.80-90.

6. Shaimaa Ezzat Salama, Mohamed I. Marie, Laila M. El-Fangary &

Yehia K. Helmy ,” Web Anomaly Misuse Intrusion Detection

Framework for SQL Injection Detection “, IJACSA

,vol.3,2012,pp.123-129
7. Shar, L. K. and Tan, H. B. K .(2012). Mining input sanitization patterns

for predicting SQL injection and cross site scripting vulnerabilities.

 Available :
http://dl.acm.org/citation.cfm?id=2337399

8. S.Avireddy, ” Random4: An application Specific Randomized

Encryption Algorithm to prevent SQL injection” IEEE conf. Trust,
Security and Privacy,2012,June,pp.1327-1333.

9. Inyong Lee, Soonki Jeong, Sangsoo Yeo, Jongsub Moon ,” A novel

method for SQL injection attack detection based on removing SQL
query attribute values” .ELSEVIER Trans. On Mathematical and

Modelling, 2011,pp58-68.

10. Indrani Balasundaram, E.Ramaraj,”An Authentication Scheme for

Preventing SQL injection Attack using Hybrid Encryption” (ISSN
1450-216,2011, Vol.53,pp.359-368.

11. Allen Pomeroy and QingTan ,"Effective SQL Injection Attack

Reconstruction Using Network Recording” IEEE Conf. on Computer
and Information Technology, Sept.2,2011,pp.552-556.

12. P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan ,”Dynamic

Candidate Evaluations Approach to prevent SQL injection” ACM
Trans. Inf. Syst. Secure., 13(2):1–39, 2010.

13. Raju Halder and Agostino Cortesi,” Obfuscation-based Analysis of
SQL Injection Attacks”,IEEE Conf. On Computers and

Communication- Italy,June,2010,pp.931-938. Digital Object Identifier

: 10.1109/ISCC.2010.5546750

14. Michelle Ruse, TanmoySarkar, Samik Basu,” SQL injection Detection

via Automatic Test Case Generation of Programs”, IEEE conf. on
Application and the Internet,July,2010,pp.31-37.

15. Ezumalai, G. Aghila, “Combinatorial Method for Preventing SQL

Injection Attacks”, IEEE Conf. on Advance Computing, March 2009.
16. M. Junjin,” An Approach for SQL Injection Vulnerability Detection-

AMNeSIA”,IEEE Conf. on Information

technology,April,2009,pp.1411-1414.
17. https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_

Sheet,Dec-2012

18. http://www.sans.org/top25-software-errors/

http://dx.doi.org/10.1109/ISCC.2010.5546750

