
International Journal of Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-1 Issue-9, August 2013

 52

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I0419081913/2013©BEIESP

Abstract: Most of the algorithms that exist today for

concurrency control over distributed shared memory, either fail

to provide a scalable model or involve a large communication

overhead for establishing consensus over the state of the shared

variables. After a thorough study of some of the efficient

algorithms this field, this paper introduces a functional view of a

holistic approach, which exploits the best features of all others.

It provides a virtual differential storage, which allows fast

replication and compact storage, along with a strong subversion

control over rollbacks in time, which provides better fault

tolerance. It also talks of an intelligent logging mechanism,

where the read/write records are used actively by the central

controller to provide exclusion over Above all, the algorithm is

best implemented in LISP or Scheme due to its functional

nature. This make the implementation computationally very

fast. A trade off, however, exists between the implementation

complexity and the quality of the final product.

Index Terms— Log, Page, Concurrency, Shared Memory.

I. INTRODUCTION

As Distributed Operating Systems become more and more

common, consistency and concurrency control become issues

of contention and importance. Many of the shared resources

like Databases, Shared Memory, Log files and the likes, have

to be allotted judiciously while avoiding starvation and

deadlock among demanding processes. This paper

introduces an algorithm, which uses a log based concurrency

and consistency maintenance system for enhanced

performance using differential disk chaining [1] of the

shared memory.

Concurrency control algorithms [1][2][3] are usually

classified as locking, timestamp ordering [4][5] and

validation (also called optimistic approach [6]). The

correctness of a concurrency control protocol is usually based

on the concept of serializability [8]. Yoav Raz provides a

detailed analysis in his paper on commitment ordering

providing the groundwork for concurrency algorithm in his

1992 paper on Commitment Ordering in Databases [10].

Many algorithms have been proposed in past for concurrency

control, including some based on distributed control. One

such algorithm, for example is Sirius-Delta for database

systems developed at INRIA, in which the integrity is

Manuscript Received on August, 2013.

Abhinav Aggarwal, Department of Computer Science and Engineering,

Indian Institute of Technology (IIT) Roorkee, Roorkee, India.

Rupika Srivastava, Department of Electronics and Computer Engineering,

Indian Institute of Technology (IIT) Roorkee, Roorkee, India.

Sumit Malik, Department of Computer Science and Engineering, Indian

Institute of Technology (IIT) Roorkee, Roorkee, India.

Kirti Meena, Department of Computer Science and Engineering, Indian

Institute of Technology (IIT) Roorkee, Roorkee, India.

Poonam, Department of Computer Science and Engineering, Indian

Institute of Technology (IIT) Roorkee, Roorkee, India.

maintained by distributed controllers in the presence of

concurrent processes.

In Sirius-Delta the cooperation is achieved by the combined

principles of atomic actions and unique timestamps. Then we

have token forwarding protocols for very large distributed

Hierarchical databases, called Hierarchical Token

Forwarding Protocol and a commitment control protocol

called Multi-level-consistency Protocol [9], by Tao and

Williams.

Another popular concurrency control protocol was provided

by William Weihl in his 1988 paper on Commutative-Based

Concurrency Control for Abstract data Type. He proposed

two different algorithms, one using intention lists and other

using undo logs [11]. His algorithms are designed for

recoverability using two different sets of data structures: post

committal Intentions list and pre-committal logs.

Bernstein and Goodman [7] [12] have also shown that

another class of algorithms based on Two Phase Locking and

atomic actions for databases, which is by far the most

commonly used algorithm, and is used with several

adaptations to provide faster access and better concurrency

control. However, the Two-phase locking algorithm (2PL) as

a concurrency control method may restrict the performance

of a shared-nothing system more severely than that of a

centralized system due to increased lock holding times. Also,

in such cases, the deadlock detection and resolution are an

added complication. Hence, many variances of it are

available which try to improvise as deadlock and starvation

free protocols, e.g. Wait-Die, Wait-Depth and Wound-Wait

implementations. The proposed algorithm is deadlock and

starvation free and tries to provide exclusive access without

using locks explicitly.

The shared memory referred to in this paper has been

designed to be kept in the virtual address space. The pages

are stored in Virtual Hard Disks, mounted on Virtual

Machines. These machines run on a central server, governed

and managed by a Controller. Virtualization has been chosen

as the base of working here so that live replication is easier

and copies of the entire chain can be maintained over remote

servers for a failover during disaster recovery. We also use

Differential Storage over these Virtual Hard Disks so that

only the differences in the each section of the memory are

stored, from the last updated values of each. A chain of disks

allows easy rollback up to K slots in time, hence, the term

K-rollback in the name. We also use intelligent and active

logs to allow multiple readers and multiple writers

concurrent access to the distributed shared memory.

However, the writers can only commit changes over the most

updated copy of the pages, for

which they might have to

download the pages at least

Virtual Differential Storage Based K-Rollback

Concurrency Control Algorithm in Distributed Shared

Memory Systems

Abhinav Aggarwal, Rupika Srivastava, Sumit Malik, Kirti Meena, Poonam

Virtual Differential Storage Based K-Rollback Concurrency Control Algorithm in Distributed Shared Memory

Systems

 53

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I0419081913/2013©BEIESP

once before the final commitment. They always store these

pages in their local cache, and changes in the cache are not

reflected in the global copies.

It is assumed that the shared memory is constructed of

pages, and each page is constructed of sectors, and that pages

are the minimum units for reading and writing. For an

enterprise, the typical sizes of a page and a sector can be

around 512MB and 512KB respectively.

This paper does not discuss authentication and

authorisation of clients. It is assumed that the users are

already authenticated and have authorisation for the pages

they are demanding. It focuses entirely on fair grant of

requested pages.

II. CONTROLLER

The architecture of the communication between a client

process and the Controller is explained through an

abstraction provided in Fig. 1.

 Process

 Controller

 Shared Log

 Memory

Fig. 1 Architecture of the Server

The algorithm is based on the concept of a centralized server,

called the Controller, which interacts with the clients, called

Processes, and provides them access to pages in the shared

memory. This memory has been implemented in the

form of a chain of differentially expanding Virtual Hard

Disks (VHD), in such a manner that at any point of time, we

have exactly „K‟ such disks in the chain. Each disk stores the

differences in the pages of shared memory, from their last

value stored in the previous set of disks.

 Base Disk ...

 Child 1 Child 2 Child (K-1)

Fig. 2 Differential Chain of the Shared Memory

The Base Disk stores all the pages of the Shared Memory,

with the initial data, that will be used by all the clients

sending requests (in the form of Tuples, explained later) to

the controller. This disk can be dynamically expanding, or

fixed, depending on the storage requirements of the

organization using it. One may go with the former if it is

expected that the number of pages may vary with time. Each

of the child disks is a differential disk, which is initially

allocated some fixed size, and then dynamically expanded as

the requirements increase. We store information only those

sectors of each page, which have been modified by the

clients. Thus, whenever a client submits an updated page, the

controller checks to see what sectors have been modified, and

then stores these changes in the disk next in chain to the last

disk where the changes were stored. If, however, we run out

of disks to store any further changes, we flush the contents of

a set of these disks (first few in line) back to the base disk,

thus committing these changes in the latter, and shift the

contents of the remaining disks to their parent disks. This

way, we make space for the new changes, and maintain K

versions of each page at all times. It may also happen that

each page has its latest set of changes in different child disks,

which is not a problem. This way of maintaining shared

memory gives us the dual advantage of keeping a storage

efficient version control over the contents of the same, as well

as allows us to replicate the entire chain over remote servers

for disaster recovery. An important point to remember in this

scenario is that the computation of changed-sectors (or dirty

sectors) and the flush operation over these disks happen in

the critical section of the controller, so that no operation can

interrupt this. It can either be carried out by a different thread

running or a parallel unit in the controller. We assume that

the client tuples can still be handled during this period,

without interrupting any of the mentioned critical operations.

Finally, to decide the optimal number of disks that should be

flushed into the base disk when such an operation takes

place, it has to be kept in mind that if this number is kept too

low, frequent flush operations may be required, and if kept

too high, large delays and error chances might creep in.

Thus, a good heuristic to decide an optimum value is to track

the average write frequency over the pages, and compare it

with the average time it takes to apply the differences stored

over the base disk.

For each tuple that the Controller receives, it authorizes the

client sending the tuple and carries on a set of operations on

successful authentication. If the client sends read or update

tuple for a set of pages, the Controller checks where the last

updated copy of each page (in the set) is stored and uses this

information to decide if a flush operation is required or not.

Once the decision and a necessary action, if any, has been

taken, it reads out a copy of each page from the chain, and

sends it to the requesting client, while making an appropriate

entry in the log file, discussed in detail in further sections.

The Controller, being centralized, also maintains a small

piece of information, called the Log Strip. This strip contains

a timestamp and one entry for each page in the shared

memory, indicating the client running its exclusive period

over the page. All the request tuples received by the

Controller are synchronized with the clock according to

which the timestamp is computed. This clock resides inside

the Controller and may be different from the local clocks at

each client. The entries of the Log file are used to find out

about the client having an exclusive access over each page.

The log file also interacts with this strip to update its later

entries.

III. COMMUNICATION PRIMITIVES

It uses message passing

communication primitives, and

all requests and replies are

International Journal of Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-1 Issue-9, August 2013

 54

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I0419081913/2013©BEIESP

tuples composed of six attributes. It uses three types of

request tuples: read, write and update and two response

tuples from the server: success and abort. A brief

explanation of the attributes is:

1. Process Number: The first attribute of every request and

reply is the process-ID of the requesting process. It is

assumed that all processes are uniquely identifiable on

the Distributed System, and it is the unique ID which a

client uses to communicate to the server.

2. Page list: The second attribute of the requests and

responses is a set of page numbers that a process is

demanding to access or is granted an access by the

controller.

3. Read Times: The third attribute is the time-stamp at

which the read request message was sent, according to

the client‟s local clock. In case of a write request, it is the

time at which the client had read the said page earlier,

according to the Controller‟s clock. In the reply tuples,

this value is set to the timestamp at which the read

request for the set of pages was successfully entered into

the log file.

4. Write Times: The time according to local clock in a

client when the write command was issued. In success

(to write), it is the time when the log entry in the server

is written after successful execution of the write request.

In success (to update), abort (to write), abort (to update),

it is the time of last update of the said page(s).

5. Gestation Period: It is the time-period for which a

process requests an exclusive write access to a page. A

gestation period is specified for all pages for which the

exclusive write access is requested, and if it is not

specified, it is assumed that the process is not interested

in an exclusive access, and a concurrent non- exclusive

access is granted. There is an upper limit to the value

this field is allowed, and if a process requests an

exclusive write access with a gestation period field

larger than that, its request is not granted, and an abort

(to read) is issued with the gestation period field set as

same as the requested gestation period. In abort (to

write) case, it is usually the time left in the exclusive

access of the process.

6. Lag: It is the time left before the exclusive access

(gestation period) of a process starts, and the time it must

wait for, before sending the exclusive write request. It is

equal to the sum of all the other processes‟ gestation

periods that have been granted before this request

arrived, and any free non-exclusive access in-between, if

any. Its use in various messages is listed in the table

alongside.

Various messages that are passed are listed as follows:

1) Read: This is the first tuple any client sends to the

server.

 Apart from the usual plain read request, it can be the

read before a write operation has to be done. The

controller does not permit a process to write without

having read a page, lest it overwrite some other

process‟s work, hence, every process has to read before

write. In such cases, the gestation period is set to the

length of the time the process wants an exclusive access

to a page. A read request is replied with a success (to

read) message, if the request is granted, with gestation

period and lag period set. Gestation period of the success

message is set to the granted gestation period, which

starts at the end of the lag period counted from the time

the reply was sent from the server‟s end. Lag field on

read is the time a client is willing to wait before being

granted an exclusive write, and is by default equal to

zero (which is taken as equal to infinite).

2) Write: A write request is issued by a client at the start of

its gestation period. Read-Time and Write-Time for this

request are respectively the time returned by the

controller on the client‟s last success (to read) on the

pages it is trying to write on and the time this write

request was issued by the client. Lag and gestation

period are the returned values on success (to read)

messages the client had received earlier from the server.

A write request is always preceded by an update request.

3) Update: An update request is issued before a write

request is issued, so that the client only writes to the

most recent copy of the pages. It is issued to see when the

page requested was last updated. The read-time entries

are the values returned by success (to read) messages,

and it can be used to reset gestation period, by specifying

a newer value in that field. If possible, the controller

allows the client to increase the gestation period, and

makes an entry of that in the log, if not, then the abort (to

update) is issued, and the client should start all the way

over from read to write with newer values. Normally,

gestation period, lag, write-time fields would be 0,

unless the client wants to have a different gestation

period. update is replied with success (to update)

messages, which in their page-number attributes contain

the pages that need to be updated by the client by issuing

a new read request, and gestation-period and lag values

are set to the remaining gestation-period and remaining

time before the gestation period of the process starts,

according to the controller clock. Also, the write-time

and read-time fields contain the values the pages were

last written and the time they were read respectively.

The read in last sentence refers to the read made by the

client sending the update request. No write is allowed

before a client makes an update call, and an update call

must be initiated just before the gestation period so that

the process has an updated copy of the page it wants to

write over.

4) Success: There are three types of success messages that

are sent by the controllers, in reply to read, write and

update requests, namely success (to read), success (to

write) and success (to update). A success (to read) is sent

when a read request is processed successfully. The

response tuple has its gestation period equal to the

gestation period sent in the read request, its lag period,

which is the time it should wait before its gestation

period starts, set in the lag field. If the process sent a

gestation period in request larger than the maximum

allowed value, then an abort (to read) is sent instead, as

explained later. Its write-times field is 0, and read-time

is the time in the controller‟s clock when it was

processed correctly and a log entry was made in that

regard. This time matches the time in log entry

regarding this request.

Success (to write): The message

issued in response to a

Virtual Differential Storage Based K-Rollback Concurrency Control Algorithm in Distributed Shared Memory

Systems

 55

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I0419081913/2013©BEIESP

successful write request. The read time in this response is the

time the controller had returned for the first read request this

client had sent asking for an exclusive access, and further

update and write requests. The write-time field is the time

when the process succeeded and a log entry was made for this

request and the page-number field lists the pages on which

the operation was successful. The lag and gestation period

fields are by default 0, and the lag field can be used for

informing the client about the current lag value on the listed

page(s). Note that the gestation period, the period for which

the exclusive access was granted expires in case of a

successful write, and the remaining period of the exclusive

access instead becomes a non-exclusive concurrent access

time, in which any process can access the page (concurrent

non- exclusive access).

Success (to update): This message is used as a response to

update requests. The page-number field is the list of pages for

which an update exists, and for those pages, the write-time

field lists the time of last updates. Gestation period and lag

fields list the remaining gestation and lag periods for the

given client.

5) Abort: An abort is issued in case when a request is

denied due to some reason. There are three abort

messages, each for read, write and update requests.

Abort (to read): For this situation, the page-number field lists

the pages for which the read request has failed. In case it

is due to the gestation period requested by the process being

more than the allowed value, then the gestation period of the

abort response is equal to the maximum allowed gestation

period on the said page. Also, if the request is denied

because its set lag period was not satisfiable, then the lag

value for that page is returned in the lag field.

Abort (to write): It is issued when a write request fails. A

write request can fail because (i) a process tried to write

before its gestation period started or (ii) because it did not

make an update request before write request. In both cases,

the page-number field contains the pages on which write

failed, and the gestation-period field is amount of remaining

gestation period, and the lag field contains the remaining lag

period. Noticeably, unlike success (to write), abort (to write)

does not vacate the exclusive access of the client, and the

client retains exclusive access for the full length of the

remaining gestation period.

Abort (to update): It is sent for pages on which no updates

occurred and do not need be re-read. For this, page- number

field contains the list of pages for which no update occurred,

and write-time is the time when the last updates were made

on the said page(s). In case of these pages, write proceeds

without having to call read again.

IV. LOG FILE

The heart of this algorithm is its logging mechanism. The

structure of this file is maintained as an ordered set of tuples,

called Log tuples. Each tuple has the following attributes:

1. Entry ID: A unique value given to all the tuples in the

file, and is used to identify each entry.

2. Time Stamp: The time according to the clock at the

Controller, when the tuple was added to the file.

3. Page Number: The page ID of the shared memory for

which the log entry has been made.

4. Process Number: The client authentication ID, which

is unique for every client that interacts with the server.

5. Access Mode: „R‟ for read request, „W‟ for write

request, „U‟ for update request

6. Read Time: The time at the which the request for

reading the page was successfully completed. It includes

the time when the page was downloaded by the client

into its local cache and an acknowledgement was

received by the Controller regarding the same.

7. Last Update Time: The time at which the page,

specified by Page number, was last updated by any

client.

8. Number of Readers: The number of clients that are

currently reading the page, specified by the Page number

9. Current Lag: The time for which at least one client is

holding an exclusive write access over the specified

page.

10. Gestation Period : The exclusive access time requested

by the client for the specified page and approved by the

Controller.

11. Pointer: The entry ID of the next read entry with

non-zero gestation period for the same page.

With these attributes of each tuple stored in the log file, the

Controller maintains a dedicated thread to interact with such

a system, and does a lot of operations on the entries. Since the

last attribute requires a pointer to the next read request, it is

only updated when that request arrives. Also, the Current

Lag is updated as the clients finish writing and exhaust their

gestation periods. Thus, the Controller interacts with each

entry of the log, and may update them at any point in time.

This renders the log file and active nature, in contrast to the

passive logs maintained by most of the other algorithms. To

avoid redundancy, the log file contains sufficient attributes to

calculate all data required in serializing the write requests

over a page, and thus, no extra storage is used to store this

information somewhere else. This renders the logging

mechanism an intelligence factor, as a lot of information is

inferred directly from the contents stored in this file.

For each request that the Controller approves, an update to

the log file can be done with the help of the following

pseudocode:

updateLog (Message M)

if(!validate(M)) { abortMessage(M); return;

}

i = createNewLogEntry(); log[i].TimeStamp := getTime();

log[i].PageNumber := M.pageNumber(); log[i].ProcessNumber :=

M.processNumber();

log[i].AccessMode :=

'R' if incoming request is read(M)

'W' if incoming request is write(M)

'U' if incoming request is update(M)

log[i].ReadTime := log[i].TimeStamp if M.AccessMode = 'R'

|| M.AccessMode = 'U'; M.ReadTime if M.AccessMode = 'W';

if(log[i].AccessMode) == ‘W’

 log[i].LUT = log[i].TimeStamp;

else

{

log[i].LUT = 0;

for(j=i;j>0;j--)

{

if(log[j].AccessMode =='W' &&

log[j].PageNumber==log[i].PageNumber)

{

log[i].LUT=log[j].TimeStamp;

break;

}

}

}

if(log[i].AccessMode == 'W')

for(j=i-1; j>0; j--)

International Journal of Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-1 Issue-9, August 2013

 56

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I0419081913/2013©BEIESP

if(log[j].PageNumber == log[i].PageNumber)

log[i].NumberOfReaders = log[j].NumberOfReaders-1; break;

else if(log[i]AccessMode == 'R')

for(j=i-1; j>0; j--)

if(log[j].PageNumber == log[i].PageNumber)

log[i].NumberOfReaders =

log[j].NumberOfReaders;

break;

log[i].Current_Lag := ComputeLag(M.processNumber,

M.pageNumber);

log[i].GP := max (M.GP, maxGP);

log[i].Pointer := NULL;

for(j=i-1; j>0; j++)

if(log[j].PageNumber == log[i].PageNumber)

if(log[j].AccessMode = ‘R’)

log[j].Pointer = i; break;

successMessage(M, i);

}

The log strip used by the Controller works in strict

synchronization with the log file. It maintains a virtual stack

of all the clients currently lined up in the request for

exclusive rights over a particular page, so that whenever a

client is done with its critical work, the values in this strip

can be updated. Moreover, these values are further used by

the Controller to update the Current Lag attribute in the log

file. Thus, a strong feedback mechanism exists between the

log file and the log strips. Care must be taken to avoid any

errors that might creep in.

V. LOG STRIPS

As mentioned earlier, these strips are used by the Controller

to maintain information about the clients which are currently

running their gestation periods over each page in the shared

memory. To maintain this information, a stack of the

pending clients is maintained for each page. The log file

entries are used as stack entries here, thus, eliminating any

extra space that may be required for the same. Consider the

ordered subset of all tuples in the log file which correspond

to read requests to a common page, say P. This subset, then,

forms the stack required for updating information in the

strip. As an example, if the entry corresponding to Page P in

the strip is, say, C, then the local clock at the Controller is

checked to see when the gestation period for C is over, and

it really expires, the entry corresponding to C in the log file is

checked for the pointer to the next client waiting in line. This

next client‟s entry is then written over the existing entry for

P, and the same process continues.

Using the log strips, the Controller updates the Current Lag

field in the log file using the following sequence of steps:

computeLag(ProcessNum, PageNum)

{

if (ProcessNum == LOG_STRIP.Page(PageNum))

return 0;

lag := stack[top].Gestation_Period – LOG_STRIP.clock;

for(i = top-1; i>=0; i--)

if (stack[i].ProcessNumber == ProcessNum)

return lag;

else

lag += stack[i].Gestation_Period;

}

A quick look at the above pseudocode clearly explains the

basic steps required for the log file to update its entries in the

lag option.

With such synchronization features, the Controller always

maintains a proper exclusion over the write requests to a

particular page.

VI. REQUEST PROCESSING

Whenever a client wants to make some change, it makes a

request to the controller. The controller, if can satisfy the

request, it grants access to the client, and lets it process, and

makes an entry for it in the log, and sends a success message.

A client can do two things, it can either want to read a page

in shared memory, or it may want to modify it. In first case,

the client should make a read request with gestation period

field 0 and lag field 0. In that case, if there is no other

process that has exclusive access, it is granted read access. If

the page is in control of a process in the middle of its

gestation period, an Abort (to read) is sent, and in the lag

field of the response is the time for which the client must wait

before reading again.

In case of write, the process first sends the read request with

a gestation period field equal to the gestation period field

required by the client. The controller replies with a success

(to read) field if the request can be granted in the conditions

specified by the client, and the lag field in the reply is the

time it would have to wait before write. If the process

specified a gestation period too large, or if the request cannot

be specified in before the maximum lag the client specified,

then the abort (to read) is sent with gestation period field

equal to the maximum allowed value of gestation period, and

lag equal to the current lag value on the requested page.

After a successful read, as the time the client must wait (lag)

comes closer to zero, the client must send an update request

to see if the value of the pages on which the client plans to

modify have been overwritten in the time it has waited or not.

If the client receives success (to update), it must re-read the

page before writing. If it receives abort (to update) instead, it

implies that the pages have not been changed meanwhile

and it is alright to update them without having to read them.

When a client receives a read request for a page with

gestation period field non-zero, it calculates the current lag

on that page, if that value is greater than permissible lag as

specified by the process in its read request, it replies with an

abort(to read with lag field filled with current lag). Else if the

gestation period specified is larger than the maximum

allowed value of gestation period, an abort (to read) message

with maximum allowed value of gestation period set in

„gestation period‟ field is returned.

If both of these conditions are not violated, then the

controller goes through the log to find out if any process is

currently in its gestation period over that page. It starts from

the starting point of the log, and finds out the first entry about

the given page number. It checks if that entry was “r” (read)

or “w” (write). In “r” entries with

„gestation-period‟ > 0, if „lag‟ + „time-stamp‟ + „gestation

period‟ – current time > 0, then, this client might have an

exclusive access over that page. Hence, we jump checking

from one entry to another using „pointer‟ field to skip

unrelated entries, to find if there is any such process. If there

is indeed any such process, then we look if there is an entry

for that page with „process-number‟ which is in “w” mode or

not. Because a process loses

exclusive control after it has

successfully updated an entry,

Virtual Differential Storage Based K-Rollback Concurrency Control Algorithm in Distributed Shared Memory

Systems

 57

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I0419081913/2013©BEIESP

if there is any such entry after time „time-stamp‟ + „lag‟ of

the original “r” entry that entailed the process the exclusive

access.

If there is no “w” entry for the process, that means that that

process holds an exclusive access pass over the requested

page (or, that we are in the gestation period of that process‟s

request) and an abort (to read) is returned to the client. If not

so, and there exists a “w” entry, then it is taken that the

process has already written, its exclusive access is assumed

expired, and a success (to read) with lag

= current lag is returned.

During write, the controller follows similar procedure. The

first step is to see if there is an “r” entry with the same

“read-time” as the arriving write request. If there is, we

check for that entry if „current lag‟ + „gestation-period‟ –

current time <0. If it is so, then we are in the gestation period

of that client. Then we check for the latest “r” entry in log for

that page and process, and if there are any “w” entries after

that. If there is no other “r” entry apart from the one with

same “read-time” as the write request, we know that the

process has not updated its copy of the page before writing,

and an abort (to write) is sent as reply, with gestation-period

field= remaining gestation-period of the process. If there is

an “r” matching with the process- number of the given

process, and there are no other “w” entries about that

page-number, we assume that the process has and updated

copy of the page, and we allow it to write, a log entry of “w”

mode with process-number of the requesting process and

requested page-number is made in the log, and an entry about

it is made in the differential disk.

If we are not in the gestation period of the requesting

process, an abort (to write) is sent instead.

When a process receives an update request with a „read-

time‟ field = rd_time, say, we see if there are any entries in

log for the given page and process with mode = “r”. If there

is, we check if the given page has any “w” mode entries after

that . If there are, we send a success (to update) to the

sending client otherwise we send an abort (to update). The

process is then expected to read the page again before

issuing a write() request.

So, following messages are transferred for read:

Client: read()

Controller: success (to read)

Client can now read

Client: read() Controller: abort(to read)(. . .

lag)

Client should try read after “lag” amount of time

For Write:

Client: read(,,,0,gest_pd, permissible_lag)

Controller: success (to read)(,,,rd_time, gest_pd,lag)

Client waits for “lag” amount of time, then sends an update

request, and waits for the reply (abort, or success)

Client: update (,,,rd_time,0,0) Controller: abort

(to update)(,,,,,) Client: write (,,,rd_time,,)

Another scenario is:

Client: read (,,,,gest_pd, permissible_lag)

Controller: abort (to read)(,,,rd_time, max_gest_pd, 0)

Request denied due to gestation period requested was larger

than the maximum allowed value

Client: read (,,,,gest_pd, permissible_lag)

Controller: abort (to read),,,rd_time, 0, lag)

Request denied due to the current lag on the page is greater

than the permissible lag the request had mentioned.

Client: read(,,,gest_pd, permissible_lag)

Controller: success (,,, gest_pd, lag)

Client waits for “lag” amount of time, sends an

update request

Client: update(,,,rd_time, 0,0)

Controller: success (to update) (,,rd_time, lst_up,

rem_gest, rem_lag)

Client should now read the said page before writing.

However, it still has the access to the page.

VII. STARVATION AND DEADLOCK

There are four different conditions called Coffman

Conditions; that have to be satisfied for deadlocks: mutual

exclusion, hold-and-wait, no preemption and circular wait.

Violation of any one condition is enough to prove that an

algorithm is deadlock free. The proposed algorithm allows

exclusive access to resources and does not pre-empt the

exclusive access of a process to a resource, but provides a

violation of the hold-and-wait condition, and hence, is

deadlock free, as explained below.

The exclusive access to a resource is granted based on a

request made such by the process. The time period, called

Gestation Period; during which a process is granted

exclusive write access to a page in the memory is always

known before- hand and limited to a maximum value

allowed for that particular controller, hence the process is not

granted an exclusive access forever. Thus, it cannot go in

hold-and-wait situation. Sooner or later, whenever the

process‟s gestation period expires, it will have to give up the

exclusive rights and other processes will get the shared

resource. This arrangement can never spiral out into an

infinite wait, and hence, cannot go into a deadlock. The time

slots allotted for access of a particular process are decided

pure based on first-come-first- serve (FCFS) policy. The

process is allotted the access for the duration it is demanded

(Gestation Period) at the end of already allotted

time-sequence (a lag), or if it is possible; in the time

intervals which were otherwise allotted to some other

processes of which the access has since been revoked. Hence,

the process always has a fixed time before which it will be

granted all the requested rights, and hence starvation cannot

occur. It is a direct consequence of allotment based on a fair

policy of FCFS unlike prioritized scheduling; and at the time

of receipt of a request instead of doing it later. Also, non-

exclusive concurrent access are always granted to processes

who request for non-exclusive access during the time there is

no exclusive access granted.

International Journal of Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-1 Issue-9, August 2013

 58

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I0419081913/2013©BEIESP

VIII. CONCLUSION

We have proposed an algorithm on “K-rollback Virtual

Differential Storage based Concurrency Control in

Distributed Shared Memory Systems”, which focuses on

concurrency control in distributed shared memory (DSM)

environment. The algorithm successfully works on multiple

readers – multiple writers scenario. It is free of deadlock as

well as starvation. This algorithm is extendible and

applicable to several other shared-resources scenario like

distributed databases where concurrency control is of major

concern. The system allows multiple reads and writes, and

the changes are stored in differential disks. This feature

allows easy recoverability in case of a crash and can be very

useful in systems which keep logs of changes made on the

original storage for records and easy rollback. The records in

differential disk are flushed pre-decided checkpoints and the

original disk is updated based on differential disk.

This algorithm, using a simple and uniform message

structure utilizes the modularity of the attributes instead of

using different structures for different functions. The

pseudo-code provided is based on lisp, but can be modified

for any language. It is simple to understand and implement.

The algorithm uses log entries for access control and

concurrency control, and does not utilize any elaborate data

structures like queues and stacks, which is intentionally

avoided to keep the overhead low. Log entries are central to

algorithm‟s implementation.

This algorithms relies on good-faith behavior of processes to

not to try to hog resources. It is fair and balanced to provide

as much access to as many processes as demanded without

any prioritizing criterion among the requests. Hence, it is

susceptible to cases where the process demand undue large

amount of resources for long periods of time. Also, it expects

the processes to declare the amount of gestation period (time

of exclusive access) before access is granted. This, although

prevents deadlock and starvation, can be a tricky for the

processes to guess, and most processes, assuming the worst

case scenarios would be poised to give out the larges possible

values of Gestation period. This problem is further

compounded when simultaneous access to several resources

is required.

REFERENCES

1. Tanenbaum A. S., Robert Van Renesse, “Distributed Operating

Systems”, ACM Computing Surverys, vol. 17, no. 4, pp. 419-471, Dec.

1985

2. G. LeLann, "Algorithms for distributed data-sharing systems which use

tickets," in Proc.

3. R. H. Thomas, "A majority consensus approach on concurrency control

for multiple copy databases," ACM Trans. Database Syst., vol. 4, no. 2,

pp. 180-209, June 1979.

4. D. J. Rosenkrantz, R. E. Stearns, and P.M. Lewis, "System level

concurency control for distributed database systems," ACM Trans.

Database Syst., vol. 3, no. 2, June 1978.

5. Pei-Jyun Leu & B Bhargava, “Multidimension Timestamp Protocols for

Concurrency Control”, IEEE Transations on Software Engineering, Vol.

SE-13, No. 12, December 1987

6. H. T. Kung and J. T. Robinson, "On optimistic methods for concurrency

control," ACM Trans. Database Syst., vol. 6, no. 2, June 1981.

7. P. Bernstein and N. Goodman, "Concurrency control in distributed

database systems," ACM Comput. Surveys, vol. 13, no. 2, June 1981.

8. Jiwu Tao, J. G. Williams, Concurrency Control and Data Replication

Strategies for Large-scale and Wide-distributed Databases, ISBN: 0-

7695-0996-7/01, ©IEEE 2001

9. Yoav Raz, “The Principle of Commitment Ordering, or Guuaranteeing

Serializability in a Heterogeneous Environment of Multiple Autonomous

Resource Managers Using Commitment”, Proceedings of the 18
th
 VLDB

Conference, Vancouver, Canada 1992.

10. William E. Weihl, “Commutavity-Based Concurrency Control for

Abstract Data Types”, IEEE Transactions on Computers, Vol 37, No. 12,

December 1992.

11. P. A. Bernstein, D. W. Shipman, and J. B. Rothnie, Jr., "Concurrency

control in a system for distributed databases (SDD-1)", ACM Trans.

Database Syst., vol. 5, no. 1, pp. 18-25, Mar. 1980.

12. Managing Virtual Hard Disks Using Differencing Disks, Microsoft

13. Corporation, available at: http://technet.microsoft.com/en-

us/library/cc720381(v=ws.10).aspx

AUTHOR PROFILE

Abhinav Aggarwal is an undergraduate student at Indian Institute of

Technology (IIT) Roorkee in Computer Science and Engineering, with

speacialisation in Information Technology, to Graduate with a B. Tech. and M.

Tech. Dual Degree in 2014.

Rupika Srivastava graduated from Indian Institute of Technology (IIT)

Roorkee with a B. Tech. In Computer Science and Engineering in 2013. She is

currently an employee with Samsung India Software Operations.

Sumit Malik is an undergraduate student at Indian Institute of Technology

(IIT) Roorkee in Computer Science and Engineering, with speacialisation in

Information Technology, to Graduate with a B. Tech. and M. Tech. Dual

Degree in 2014.

Kirti Meena is an undergraduate student at Indian Institute of Technology

(IIT) Roorkee in Computer Science and Engineering, with speacialisation in

Information Technology, to Graduate with a B. Tech. and M. Tech. Dual

Degree in 2014.

Poonam is an undergraduate student at Indian Institute of Technology (IIT)

Roorkee in Computer Science and Engineering, with speacialisation in

Information Technology, to Graduate with a B. Tech. and M. Tech. Dual

Degree in 2014.

http://technet.microsoft.com/en-us/library/cc720381(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc720381(v=ws.10).aspx

