
International Journal of Innovative Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-3 Issue-9, August 2015

14

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: H0915073815/2015©BEIESP



Abstract—This paper is concerned with the implementation

and performance evaluation of Elliptic Curve Cryptography in

constrained devices such as wireless sensor nodes. Experimental

evaluation for Elliptic Curve Digital Signature (ECDSA) on an

8-bit (Arduino mega2560) and a 32-bit (Arduino Due) processor

using the Relic-toolkit has been carried out and comparative

implementation results are given. It is shown that by adopting

appropriate optimizations an ECDSA can be achieved in 83ms.

Index Terms— WSN, ECC, Software Implementation, Relic

toolkits.

I. INTRODUCTION

The recent and expected proliferation of wireless sensor

networks (WSN) with all its economical and societal benefits

across a range of applications spanning healthcare, home,

environment and defense will face serious limitations if

security concerns are not addressed. Cryptography plays a

very important role in achieving security.

Elliptic Curve Cryptography (ECC) is increasingly

becoming the first choice for public key cryptography

implementation as it requires much shorter key sizes

compared to the RSA for the same level of security.
The implementation of ECC on sensor node platforms

remains a challenge due to the resources limitation in these

nodes.. Therefore, optimal low resource ECC

implementations are required with optimization techniques to

speed up the ECC operations and to reduce the memory usage

without prohibitive complexity.
The Relic- toolkit developed by [1] is an attractive

platform for providing security in WSN. It has many features

compared to the other ECC open sources libraries and

[2]–[4] and sup-ports many modern cryptography functions

and protocols such as (ECDSA, ECDH,RSA and ECMQV).
The contribution of this work is to present the design,

implementation and practical evaluation of ECC for

con-strained environments by deploying an efficient

cryptography library (the relic-toolkit) in platforms

representative of wireless sensor node platforms.

Experimental analysis and evaluation for Elliptic Curve

Digital Signature (ECDSA) on both an 8-bit and a 32-bit

platform (Arduino mega2560 and Arduino Due) has been

carried out and comparative implementation results are given.

To our knowledge no such analysis and results have been

reported to date.

The implementation results obtained, show that ECDSA

key generation on Arduino Due can be achieved in (90ms)

com-pared to (263ms) on the Arduino Mega for m=163.

Further-more, implementation optimization (such as

multi-precision GF (2m) arithmetic) configurations are

Revised Version Manuscript Received on August 01, 2015.
 Mohamed Said Albahri, German University of Technology, Oman.

shown to enhance the performance of the ECDSA on the

Arduino Due to (83 ms). These results will act as a useful

benchmark and guidance in selection of the optimization

techniques provided by the tool for a given WSN application.
This paper is organized as follows: Section II provides

ECC background. The third section provides the design

principle. The optimizations provided by the relic-toolkit are

presented in section IV. The implementation work is

described in section V. In section VI we present the results

analysis. Finally, we conclude this paper in section VII.

II. ECC BACKGROUND

In 1985 both Neal Koblitz and Victor S.Miler proposed

independently elliptic Curve Cryptography. Elliptic Curve

Cryptography is based on Elliptic Curve theories. Currently,

ECC is considered to be one of the main players for

implementing security in different applications. Basically,

ECC has better features and future for cryptography as it has

the capability to provide many cryptography schemes, such

as key Management, Digital Signature and Verification.

Beside these services and its powerful security, ECC has

more powerful computation with shorter key length sizes

compared to the other public key cryptography solutions such

as RSA and Diffie-Hellman. ECC could be defined over

prime fields and binary fields . However, for a purpose of this

work we consider Elliptic Curve over binary fields. The

equation below represents the elliptic curve over binary fields

[5]:

y
2
 + xy = x

3
 + ax

2
 + b (1)

where 0b  and the value of x; y; a and b are polynomials

representing n bit words.

Finding points on the curve could be achieved by using
generator for polynomials and irreducible polynomial. The
rules for points addition in GF (2

m
) is different from GF (P)

Therefore, if P = (x1, y1) and Q = (x2, y2) and Q  P , then
can be found as shown below:

= (y2 + y1)/(x2 + x1)

x3 = 
2
 +  + x1 + x2 + a

y3 =  (x1 + x3) + x3 + y1 (2)

and if Q = P then R = P + P or R = 2P can be found
as below:

 = x1 + y1/x1

x3 = 
2
 +  + a

y3 = x2 + ( + 1)x3 (3)

ECC Implementation on Wireless Sensor Nodes

Mohamed Said Albahri

ECC Implementation on Wireless Sensor Nodes

15

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: H0915073815/2015©BEIESP

In the other hand the point doubling 2P can be found as

below :
Let P 1 = (x1, y1) E(GF (2

m
)) where P1  -P and

2P = (x3, y3) then,

2 23 & 3 3 3
1 12

1

b
x x y x x x

x
     (4)

where
2 1

2 1

y y

x x

 
  

P1  P2&  =
1

1 1 2
1

y
x P P

x
 

Elliptic Curve Digital Signature (ECDSA) is used for

digital signature purposes and it consists of three main

procedures which are key pair generation, signature

generation and sig-nature verification. The Elliptic Curve

Diffie Hellman protocol is used for exchanging the keys

between two parties over an insecure channel. The purpose

for having the ECC schemes is to provide high level of

security with smaller key sizes. Therefore, it is important for

both parties involved in the communication to have

per-defined and agreed domain parameters for each scheme.

The detailed specification can be found in [6].

III. DESIGN PRINCIPLES

The primary objective for the relic-toolkit is to construct

efficient and configurable cryptographic software capable to

implement a certain level of security and algorithms.

Therefore, we achieved these objectives through different

design principles that we considered during the

implementation stages.
Security: The relic-toolkit is designed to provide

cryptography protocols such as (RSA, ECDH, ECDSA,

ECSS and ECMQV). In addition to that relic-toolkits support

the implementation of ECC over prime field and ECC over

bi-nary field. This includes different Elliptic Curve

parameters recommended by the Standard for Efficient

Cryptography Group (SECG) such as Secp160k1, Secp160r1

and Secp160r2 detailed by [7].
Configurability: The Configurability principle is a

achieved by allowing the user to select the desired

components for the targeted platform during the library

building procedures. Furthermore, the required performance

can be achieved by combining and selecting different type of

mathematical optimization provided by the tool.

Portability: The Relic-toolkit can be used with different

type of Wireless Sensor platform such as ARM, AVR and

MSP. Additionally, the library could be built in different type

of operating system such as windows (using MingW),

Ubuntu and Mac OS. In this work we consider importing and

testing the relic library in Arduino mega260 (AVR- 8-bit

processor) and Arduino Due(ARM-cortex-32 bit processor).

Efficiency: To better achieve the desired efficiencies from

the tool we decided to implement the ECC over binary fields

based on the potential result reported by [end to end security].

We also used an assembly version (shown as K163-asm) file

in order to achieve better performance as recommended by

[8].
Functionality: This principle is insured through the

practical implementation for different public key

cryptography schemes provided by the relic-toolkit such as

ECDH and ECDSA.

IV. OPTIMIZATION

In this section we aim to provide relevant optimization

techniques accomplished with the optimization algorithms

available in the tool. The detail provided with this regard is

limited to the optimization techniques used in this paper.

A. Optimization for Multiple Precision Arithmetic

 The multiple precision is required for big number

arithmetic. It is highly efficient for public key cryptography

implementations in resolving memory limitations as well as

overcoming overflow issues. The contribution of multiple

precision on solving such problems is through in-creasing the

integer representation while using single precision data type

[9]. The implementation procedure consists of three different

phases. These phases are temperance initialization, column

calculation and carries propagation phase. Further to

optimistic results reported by [10] the author of [11] shows

better performance compared to the school book

multiplication method. However, the relic-toolkits allow the

user to select from different type of multiple precision

arithmetic algorithms beside the comba algorithm such as

School-Book multiplication, Karatsuba multiplication and

others.

Montgomery-comb Modular Reduction Algorithm:

A modular reduction is a process of finding the reminder of

dividing two products:

 a b modc where b is restricted with range
20 b c 

Modular reduction is important in ECC public key

cryptography computations.

The implementation of the Montgomery modular

reduction algorithm involves fewer single multi precision

multiplications in comparison with Barrett Modular

reduction which requires two modified multipliers. Previous

software implementation of the Montgomery algorithm

reported slower speed. This challenge has been tackled and

resolved by the researchers through combing the

Montgomery modular reduction and comba algorithms. The

combination methodology could be achieved by allowing the

comba algorithm to act as multiplier.

Comba Squaring Algorithm:

Multiple Precision Squaring is a process of multiplying

two equal multiplicands and influences overall

implementation performance.. The software implementation

for squaring could be performed using multiplication

algorithms or using specialized squaring methods. Using

specialized squaring helps to reduce the load operand

approximately by half over using multiplication algorithms.

Additionally it helps to enhance the computation

performance for the duplicated partial products. Moreover,

the specialized squaring algorithms contribute to overcome

the limitation of base line multiplication algorithms. These

limitations could be summarized into two main points.

Firstly, the needs for processing single precision shift inside

the nested loop. Secondly, the challenges of performing the

products doubling process

inside the inner loop.

International Journal of Innovative Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-3 Issue-9, August 2015

16

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: H0915073815/2015©BEIESP

The comba squaring algorithm could be used to solve these

drawbacks. The concept of comba squaring is to some extent

similar to the comba multiplication algorithm with some

differences that help to accommodate the single precision

shifting and doubling processes. The relic tool-kit supports

three different multiple precision square algorithms besides

the comba squaring which are the Karatsuba Squaring, the

recursive karatsuba and the School book method [9]. In this

work we configure the Relic library with Comba squaring to

gain better performance.

B. Optimization for Elliptic curve Arithmetic

Point Representations: There are different coordinate

systems that can be used to represent the elliptic curve. The

affine coordinates and projective coordinates are the most

well known. The projective coordinates can be considered as

an option that can help avoid the costly and expensive

multiplication and inversion operations. The results reported

by [12] show better performance achievement compared to

the affine. The relic-toolkit has been designed to support both

and we selected the projective coordinate to achieve better

performance.
Point Multiplications: Point Multiplication or scalar

multiplication is implemented through a series of point

addition and point doubling operations. The key is to be

obtained after conducting full cycle of addition and doubling

operations. The point multiplication over the binary elliptic

curve can be implemented with different algorithms such as

Left-to-right binary algorithm, Halving. Right-to -left

width-w and others. The relic library consists of six different

algorithms such as the Basic binary point multiplication

algorithms, Lopez-Dahab point multiplication and

Right-to-left width-w (T)NAF. Since the sliding windows

method is more helpful on speeding up the scalar

multiplication we selected the right to left width
(T) NAF algorithm for performing the point multiplication.

The concept of sliding windows is based on scanning bit at a

time and perform the point doubling for the at the same time

[3].

Simultaneous Point Multiplications: Enhancing the

efficiencies and speeding up computation of point

multiplication has been intensively considered by many

researchers due to its importance in some ECC schemes. For

example the implementation of ECDSA required two types

of point multiplication. The first one is needed for signature

generation where is fixed in . Whereas, the second type is to

be used in signature verification process where is also fixed

but is unknown. However, speeding up the signature

verification processes can be achieved using simultaneous

multiple point multiplication. Different methods have been

proposed for simultaneous point multiplications such as

Shamir’s trick, Joint sparse form and Interleaving. With this

aspect the relic-toolkits support all of these methods plus the

basic simultaneous point multiplication methods that can be

selected during the relic building process.

V. IMPLEMENTATION

Point Representations: We imported the Relic-toolkit [1]

into the arduino mega 2560 (8-bit AVR processor) [13] and

arduino Due (32-bit ARM processor). Our selection for these

platforms is based on fact that we targeted to implement the

ECC schemes on a processor that does not require an

operating system support. Furthermore, the 8-bit to 32-bit

processor range is a representative range for constrained

applications. We imported relic-0.3.1 onto the two platform

boards and we experimented with the performance of

ECDSA and ECDH over binary fields using different NIST

curves standard (NIST-K163,NIST-B163). For obtaining

better performance we exam-ined the presets provided by [2].

The execution timings of the codes were measured using

inbuilt millis() function provided by Arduino.h library.

Furthermore, we measured the amount of RAM using

"MemoryFree.h" library beside the avr-size and

arm-none-eabi-size tools.
Experiment Setup: In order to build the library we

installed the avr-gcc version 4.5.3 compiler and cmake

cross-platform version 2.8.7. The recommended presets by

[1] shown in Figures 4 and 5 in the Appendix were used for

building the library with low memory optimization

algorithms and faster time execution respectively. For

importing the relic-toolkit in arduino Due we installed

arduino extension plug-in (embedxcode) in Xcode IDE MAC

OS X version 10.7.3 then we imported the relic-toolkits into

the XCode IDE.

VI. RESULTS ANALYSIS

Due to the importance of time and memory usages we

considered evaluating our ECC implementation based on

these two factors. The arduino mega2560 is an 8 bit

micro-controller but it has the capability to manipulate

16X16 bit operations by using two separate registers. From

the other perspective, the arduino Due is a 32bit

micro-controller and can easily handle 8 and 16 bit

operations. We measured the execution time using the inbuilt

function millis() provided by the ardunio library. This

function returns the timing result in milliseconds using the

arduino internal timer #0 or TCNT0. However, the timer runs

at 16 MHz in arduino mega2560 and at 84 MHz in arduino

DUE. On the other hand, we measured the amount of RAM

using arm-none-eabi-size tool for arduino DUE and we used

the avr-size tool for measuring the RAM utilization in

arduino mega2560.

ECDSA: In this part we demonstrate the main obtained

results with regards the ECDSA performance. Figure -1

below shows the time execution for ECDSA key generation

on both platforms. As expected the arduino mega2560 takes

more time to generate the ECDSA keys as it runs at much

lower clock than the arduino Due. In addition, the binary field

arithmetic with BASIC algorithm configuration resulted an

improved performance on the DUE as shown in figure-2. The

performance on the mega2560 was improved using the

assembly code provided in the library. This enhancement is

represented by the figures below which include the time

execution improvement and memory usages respectively.

These results show even better performance compared to the

results reported by [3] and [4]

ECC Implementation on Wireless Sensor Nodes

17

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: H0915073815/2015©BEIESP

Figure 1. Execution time key generation for ECDSA

Figure 2. Execution time of ECDSA

Figure 3. ECDSA Arduino mega2560 time improvement

Figure 4. ECDSA Arduino mega2560 memory

improvement

VII. CONCLUSION

In this work, we illustrated the potential of implementing

Relic-tookits on sensor node platforms. We also evaluated

some of the optimization methods and their effectiveness in

the ECDSA implementation Performance. The configuration

features provided by the relic-toolkit can help enhance the

ECC performance which could be considered as a benchmark

and guidance for the developer planning to use the relic in

resource constrained processor platforms such as the ones

presented in this paper.

APPENDIX

Relic low memory preset

Relic Faster time execution

REFERENCES

1. D. F. A. Gouv and C. P. L., “Relic is an efficient library for

cryptography.” [Online]. Available:
ttp://code.google.com/p/relic-toolkit/

2. “Avrcryptolib,” 2014. [Online]. Available: http://www.emsign.nl/
3. Liu and P. Ning, “Tinyecc: A configurable library for elliptic curve

cryptography in wireless sensor networks,” in Information Processing

in Sensor Networks, 2008. IPSN’08. International Conference on.
IEEE, Conference Proceedings, pp. 245–256.

4. S. C. Seo, H. Dong-Guk, H. C. Kim, and H. Seokhie, “Tinyecck:

Ef-ficient elliptic curve cryptography implementation over< i>
gf</i>(< i> 2</i>< i>< sup> m</sup></i>) on 8-bit micaz mote,”

IEICE transactions on information and systems, vol. 91, no. 5, pp.

1338–1347, 2008.
5. N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of

computation, vol. 48, no. 177, pp. 203–209, 1987.

6. “Sec1 final,” 2014. [Online]. Available:

http://www.secg.org/collateral/ sec1_final.pdf

7. “sec2 final,” 2014. [Online]. Available:

http://www.secg.org/collateral/ sec2_final.pdf
8. M. Sethi, J. Arkko, and A. Keranen, “End-to-end security for sleepy

smart object networks,” in Local Computer Networks Workshops

(LCN Workshops), 2012 IEEE 37th Conference on, Conference
Proceedings, pp. 964–972.

9. T. S. Denis, BigNum Math: Implementing Cryptographic Multiple

Pre-cision Arithmetic. Syngress Publishing, 2006.
10. P. G. Comba, “Exponentiation cryptosystems on the ibm pc,” IBM

systems journal, vol. 29, no. 4, pp. 526–538, 1990.

11. J. GroÃ§schÃd’dl, R. M. Avanzi, E. SavaÅ§, and S. Tillich,
Energy-efficient software implementation of long integer modular

arithmetic. Springer, 2005, pp. 75–90.

12. D. Hankerson, J. L. Hernandez, and A. Menezes, “Software
implementa-tion of elliptic curve cryptography over binary fields,” in

Cryptographic Hardware and Embedded Systemsâ ATCHES 2000.

Springer, Confer-ence Proceedings, pp. 1–24.
13. “Arduino - homepage,” 2014. [Online]. Available:

http://www.arduino. cc/

http://code.google.com/p/relic-toolkit/
http://code.google.com/p/relic-toolkit/
http://www.emsign.nl/
http://www.secg.org/collateral/sec1_final.pdf
http://www.secg.org/collateral/sec1_final.pdf
http://www.secg.org/collateral/sec1_final.pdf
http://www.secg.org/collateral/sec2_final.pdf
http://www.secg.org/collateral/sec2_final.pdf
http://www.secg.org/collateral/sec2_final.pdf
http://www.arduino.cc/
http://www.arduino.cc/

