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Abstract—This paper is concerned with the implementation 

and performance evaluation of Elliptic Curve Cryptography in 

constrained devices such as wireless sensor nodes. Experimental 

evaluation for Elliptic Curve Digital Signature (ECDSA) on an 

8-bit (Arduino mega2560) and a 32-bit ( Arduino Due) processor 

using the Relic-toolkit has been carried out and comparative 

implementation results are given. It is shown that by adopting 

appropriate optimizations an ECDSA can be achieved in 83ms. 

 

Index Terms— WSN, ECC, Software Implementation, Relic 

toolkits.  

I. INTRODUCTION 

The recent and expected proliferation of wireless sensor 

networks (WSN) with all its economical and societal benefits 

across a range of applications spanning healthcare, home, 

environment and defense will face serious limitations if 

security concerns are not addressed. Cryptography plays a 

very important role in achieving security. 
 

Elliptic Curve Cryptography (ECC) is increasingly 

becoming the first choice for public key cryptography 

implementation as it requires much shorter key sizes 

compared to the RSA for the same level of security.  
The implementation of ECC on sensor node platforms 

remains a challenge due to the resources limitation in these 

nodes.. Therefore, optimal low resource ECC 

implementations are required with optimization techniques to 

speed up the ECC operations and to reduce the memory usage 

without prohibitive complexity.  
The Relic- toolkit developed by  [1] is an attractive 

platform for providing security in WSN. It has many features 

compared to the other ECC open sources libraries and  

[2]–[4] and sup-ports many modern cryptography functions 

and protocols such as (ECDSA, ECDH,RSA and ECMQV).  
The contribution of this work is to present the design, 

implementation and practical evaluation of ECC for 

con-strained environments by deploying an efficient 

cryptography library (the relic-toolkit) in platforms 

representative of wireless sensor node platforms. 

Experimental analysis and evaluation for Elliptic Curve 

Digital Signature (ECDSA) on both an 8-bit and a 32-bit 

platform (Arduino mega2560 and Arduino Due) has been 

carried out and comparative implementation results are given. 

To our knowledge no such analysis and results have been 

reported to date. 

The implementation results obtained, show that ECDSA 

key generation on Arduino Due can be achieved in (90ms) 

com-pared to (263ms) on the Arduino Mega for m=163. 

Further-more, implementation optimization (such as 

multi-precision GF (2m) arithmetic) configurations are 
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shown to enhance the performance of the ECDSA on the 

Arduino Due to (83 ms). These results will act as a useful 

benchmark and guidance in selection of the optimization 

techniques provided by the tool for a given WSN application.  
This paper is organized as follows: Section II provides 

ECC background. The third section provides the design 

principle. The optimizations provided by the relic-toolkit are 

presented in section IV. The implementation work is 

described in section V. In section VI we present the results 

analysis. Finally, we conclude this paper in section VII. 

II. ECC BACKGROUND  

In 1985 both Neal Koblitz and Victor S.Miler proposed 

independently elliptic Curve Cryptography. Elliptic Curve 

Cryptography is based on Elliptic Curve theories. Currently, 

ECC is considered to be one of the main players for 

implementing security in different applications. Basically, 

ECC has better features and future for cryptography as it has 

the capability to provide many cryptography schemes, such 

as key Management, Digital Signature and Verification. 

Beside these services and its powerful security, ECC has 

more powerful computation with shorter key length sizes 

compared to the other public key cryptography solutions such 

as RSA and Diffie-Hellman. ECC could be defined over 

prime fields and binary fields . However, for a purpose of this 

work we consider Elliptic Curve over binary fields. The 

equation below represents the elliptic curve over binary fields  

[5]: 

y
2
 + xy = x

3
 + ax

2
 + b (1) 

  

where 0b   and the value of x; y; a and b are polynomials 

representing n bit words. 
 
Finding points on the curve could be achieved by using 
generator for polynomials and irreducible polynomial. The 
rules for points addition in GF (2

m
) is different from GF (P ) 

Therefore, if P = (x1, y1) and Q = (x2, y2) and Q   P , then 
can be found as shown below: 

= (y2 + y1)/(x2 + x1) 
 

x3 =   
2
 +   + x1 + x2 + a 

 
y3 =   (x1 + x3) + x3 + y1 (2) 

and  if  Q = P then R = P + P or R = 2P can be found  
as below: 

  

 = x1 + y1/x1  

x3 =   
2
 +   + a  

y3 = x2 + (   + 1)x3 (3) 
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In the other hand the point doubling 2P can be found as 

below : 
Let P 1  =  (x1, y1) E(GF (2

m
)) where P1   -P and 

2P = (x3, y3) then, 

    
2 23 & 3 3 3
1 12

1
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x x y x x x
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Elliptic Curve Digital Signature (ECDSA) is used for 

digital signature purposes and it consists of three main 

procedures which are key pair generation, signature 

generation and sig-nature verification. The Elliptic Curve 

Diffie Hellman protocol is used for exchanging the keys 

between two parties over an insecure channel. The purpose 

for having the ECC schemes is to provide high level of 

security with smaller key sizes. Therefore, it is important for 

both parties involved in the communication to have 

per-defined and agreed domain parameters for each scheme. 

The detailed specification can be found in  [6]. 

III.  DESIGN PRINCIPLES 

The primary objective for the relic-toolkit is to construct 

efficient and configurable cryptographic software capable to 

implement a certain level of security and algorithms. 

Therefore, we achieved these objectives through different 

design principles that we considered during the 

implementation stages.  
Security: The relic-toolkit is designed to provide 

cryptography protocols such as (RSA, ECDH, ECDSA, 

ECSS and ECMQV). In addition to that relic-toolkits support 

the implementation of ECC over prime field and ECC over 

bi-nary field. This includes different Elliptic Curve 

parameters recommended by the Standard for Efficient 

Cryptography Group (SECG) such as Secp160k1, Secp160r1 

and Secp160r2 detailed by  [7].  
Configurability: The Configurability principle is a 

achieved by allowing the user to select the desired 

components for the targeted platform during the library 

building procedures. Furthermore, the required performance 

can be achieved by combining and selecting different type of 

mathematical optimization provided by the tool. 

Portability: The Relic-toolkit can be used with different 

type of Wireless Sensor platform such as ARM, AVR and 

MSP. Additionally, the library could be built in different type 

of operating system such as windows (using MingW), 

Ubuntu and Mac OS. In this work we consider importing and 

testing the relic library in Arduino mega260 (AVR- 8-bit 

processor) and Arduino Due( ARM-cortex-32 bit processor). 
 

Efficiency: To better achieve the desired efficiencies from 

the tool we decided to implement the ECC over binary fields 

based on the potential result reported by [end to end security]. 

We also used an assembly version (shown as K163-asm) file 

in order to achieve better performance as recommended by  

[8].  
Functionality: This principle is insured through the 

practical implementation for different public key 

cryptography schemes provided by the relic-toolkit such as 

ECDH and ECDSA. 

IV. OPTIMIZATION  

In this section we aim to provide relevant optimization 

techniques accomplished with the optimization algorithms 

available in the tool. The detail provided with this regard is 

limited to the optimization techniques used in this paper. 

A. Optimization for Multiple Precision Arithmetic 

 The multiple precision is required for big number 

arithmetic. It is highly efficient for public key cryptography 

implementations in resolving memory limitations as well as 

overcoming overflow issues. The contribution of multiple 

precision on solving such problems is through in-creasing the 

integer representation while using single precision data type  

[9]. The implementation procedure consists of three different 

phases. These phases are temperance initialization, column 

calculation and carries propagation phase. Further to 

optimistic results reported by  [10] the author of  [11] shows 

better performance compared to the school book 

multiplication method. However, the relic-toolkits allow the 

user to select from different type of multiple precision 

arithmetic algorithms beside the comba algorithm such as 

School-Book multiplication, Karatsuba multiplication and 

others. 

Montgomery-comb Modular Reduction Algorithm:  

A modular reduction is a process of finding the reminder of 

dividing two products: 

 a b modc  where b is restricted with range 
20 b c   

Modular reduction is important in ECC public key 

cryptography computations.  

The implementation of the Montgomery modular 

reduction algorithm involves fewer single multi precision 

multiplications in comparison with Barrett Modular 

reduction which requires two modified multipliers. Previous 

software implementation of the Montgomery algorithm 

reported slower speed. This challenge has been tackled and 

resolved by the researchers through combing the 

Montgomery modular reduction and comba algorithms. The 

combination methodology could be achieved by allowing the 

comba algorithm to act as multiplier. 

Comba Squaring Algorithm:  

Multiple Precision Squaring is a process of multiplying 

two equal multiplicands and influences overall 

implementation performance.. The software implementation 

for squaring could be performed using multiplication 

algorithms or using specialized squaring methods. Using 

specialized squaring helps to reduce the load operand 

approximately by half over using multiplication algorithms. 

Additionally it helps to enhance the computation 

performance for the duplicated partial products. Moreover, 

the specialized squaring algorithms contribute to overcome 

the limitation of base line multiplication algorithms. These 

limitations could be summarized into two main points. 

Firstly, the needs for processing single precision shift inside 

the nested loop. Secondly, the challenges of performing the 

products doubling process 

inside the inner loop.  
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The comba squaring algorithm could be used to solve these 

drawbacks. The concept of comba squaring is to some extent 

similar to the comba multiplication algorithm with some 

differences that help to accommodate the single precision 

shifting and doubling processes. The relic tool-kit supports 

three different multiple precision square algorithms besides 

the comba squaring which are the Karatsuba Squaring, the 

recursive karatsuba and the School book method  [9]. In this 

work we configure the Relic library with Comba squaring to 

gain better performance. 

B. Optimization for Elliptic curve Arithmetic 

Point Representations: There are different coordinate 

systems that can be used to represent the elliptic curve. The 

affine coordinates and projective coordinates are the most 

well known. The projective coordinates can be considered as 

an option that can help avoid the costly and expensive 

multiplication and inversion operations. The results reported 

by  [12] show better performance achievement compared to 

the affine. The relic-toolkit has been designed to support both 

and we selected the projective coordinate to achieve better 

performance.  
Point Multiplications: Point Multiplication or scalar 

multiplication is implemented through a series of point 

addition and point doubling operations. The key is to be 

obtained after conducting full cycle of addition and doubling 

operations. The point multiplication over the binary elliptic 

curve can be implemented with different algorithms such as 

Left-to-right binary algorithm, Halving. Right-to -left 

width-w and others. The relic library consists of six different 

algorithms such as the Basic binary point multiplication 

algorithms, Lopez-Dahab point multiplication and 

Right-to-left width-w (T)NAF. Since the sliding windows 

method is more helpful on speeding up the scalar 

multiplication we selected the right to left width  
(T) NAF algorithm for performing the point multiplication. 

The concept of sliding windows is based on scanning bit at a 

time and perform the point doubling for the at the same time  

[3]. 

Simultaneous Point Multiplications: Enhancing the 

efficiencies and speeding up computation of point 

multiplication has been intensively considered by many 

researchers due to its importance in some ECC schemes. For 

example the implementation of ECDSA required two types 

of point multiplication. The first one is needed for signature 

generation where is fixed in . Whereas, the second type is to 

be used in signature verification process where is also fixed 

but is unknown. However, speeding up the signature 

verification processes can be achieved using simultaneous 

multiple point multiplication. Different methods have been 

proposed for simultaneous point multiplications such as 

Shamir’s trick, Joint sparse form and Interleaving. With this 

aspect the relic-toolkits support all of these methods plus the 

basic simultaneous point multiplication methods that can be 

selected during the relic building process. 

V. IMPLEMENTATION  

Point Representations: We imported the Relic-toolkit  [1] 

into the arduino mega 2560 (8-bit AVR processor)  [13] and 

arduino Due (32-bit ARM processor). Our selection for these 

platforms is based on fact that we targeted to implement the 

ECC schemes on a processor that does not require an 

operating system support. Furthermore, the 8-bit to 32-bit 

processor range is a representative range for constrained 

applications. We imported relic-0.3.1 onto the two platform 

boards and we experimented with the performance of 

ECDSA and ECDH over binary fields using different NIST 

curves standard (NIST-K163,NIST-B163). For obtaining 

better performance we exam-ined the presets provided by [2]. 

The execution timings of the codes were measured using 

inbuilt millis() function provided by Arduino.h library. 

Furthermore, we measured the amount of RAM using 

"MemoryFree.h" library beside the avr-size and 

arm-none-eabi-size tools.  
Experiment Setup: In order to build the library we 

installed the avr-gcc version 4.5.3 compiler and cmake 

cross-platform version 2.8.7. The recommended presets by  

[1] shown in Figures 4 and 5 in the Appendix were used for 

building the library with low memory optimization 

algorithms and faster time execution respectively. For 

importing the relic-toolkit in arduino Due we installed 

arduino extension plug-in (embedxcode) in Xcode IDE MAC 

OS X version 10.7.3 then we imported the relic-toolkits into 

the XCode IDE. 

VI. RESULTS ANALYSIS  

Due to the importance of time and memory usages we 

considered evaluating our ECC implementation based on 

these two factors. The arduino mega2560 is an 8 bit 

micro-controller but it has the capability to manipulate 

16X16 bit operations by using two separate registers. From 

the other perspective, the arduino Due is a 32bit 

micro-controller and can easily handle 8 and 16 bit 

operations. We measured the execution time using the inbuilt 

function millis() provided by the ardunio library. This 

function returns the timing result in milliseconds using the 

arduino internal timer #0 or TCNT0. However, the timer runs 

at 16 MHz in arduino mega2560 and at 84 MHz in arduino 

DUE. On the other hand, we measured the amount of RAM 

using arm-none-eabi-size tool for arduino DUE and we used 

the avr-size tool for measuring the RAM utilization in 

arduino mega2560. 

ECDSA: In this part we demonstrate the main obtained 

results with regards the ECDSA performance. Figure -1 

below shows the time execution for ECDSA key generation 

on both platforms. As expected the arduino mega2560 takes 

more time to generate the ECDSA keys as it runs at much 

lower clock than the arduino Due. In addition, the binary field 

arithmetic with BASIC algorithm configuration resulted an 

improved performance on the DUE as shown in figure-2. The 

performance on the mega2560 was improved using the 

assembly code provided in the library. This enhancement is 

represented by the figures below which include the time 

execution improvement and memory usages respectively. 

These results show even better performance compared to the 

results reported by  [3] and  [4] 
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Figure 1.  Execution time key generation for ECDSA 

 

Figure 2.  Execution time of ECDSA 

 

 
 

Figure 3.  ECDSA Arduino mega2560 time improvement 

 

 

Figure 4.  ECDSA Arduino mega2560 memory 

improvement 

VII. CONCLUSION 

In this work, we illustrated the potential of implementing 

Relic-tookits on sensor node platforms. We also evaluated 

some of the optimization methods and their effectiveness in 

the ECDSA implementation Performance. The configuration 

features provided by the relic-toolkit can help enhance the 

ECC performance which could be considered as a benchmark 

and guidance for the developer planning to use the relic in 

resource constrained processor platforms such as the ones 

presented in this paper. 

APPENDIX 
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