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Abstract— The fields of machine learning and mathematical 

optimization increasingly intertwined. The special topic on 

supervised learning and convex optimization examines this 

interplay. The training part of most supervised learning 

algorithms can usually be reduced to an optimization problem 

that minimizes a loss between model predictions and training 

data. While most optimization techniques focus on accuracy and 

speed of convergence, the qualities of good optimization 

algorithm from the machine learning perspective can be quite 

different since machine learning is more than fitting the data. 

Better optimization algorithms that minimize the training loss can 

possibly give very poor generalization performance. In this paper, 

we examine a particular kind of machine learning algorithm, 

boosting, whose training process can be viewed as functional 

coordinate descent on the exponential loss. We study the relation 

between optimization techniques and machine learning by 

implementing a new boosting algorithm. DABoost, based on 

dual-averaging scheme and study its generalization performance. 

We show that DABoost, although slower in reducing the training 

error, in general enjoys a better generalization error than 

AdaBoost. 

Index Terms— Machine Learning, Optimization, Boosting, 

AdaBoost, computational learning theory  

I. INTRODUCTION 

Optimization formulations and methods lie at the heart of 

many machine learning algorithms [19].   A larger number of 

machine learning algorithms reduce to optimization 

problems. For example, support vector machine (SVM) [10, 

22, 23] minimizes the hinge loss function between the training 

data and the model prediction. Hidden temporal model for 

sequential data [21, 2, 14, 13] maximize the conditional 

likelihood of observed data. Logistic regression minimized 

the negative log conditional likelihood of training data given 

the model. Reinforcement Learning problems [3, 16, 11, 12] 

can be formulated in terms of maximizing the sum of future 

rewards. Optimization algorithms are widely used for training 

a machine learning model. However, machine learning is 

more than simply a consumer of optimization techniques 

since machine learning concerns not only about model 

training but also model validation. The criterion used to 

validate the efficacy of a model is not the same as the criterion 

used for training the model. In an optimization problem, the 

quality of a good solution would be measured by its speed 

(convergence rate) and accuracy (objective gap). But in 

machine learning, the generalization performance is perhaps 

the most important metric of solution quality. An optimization 

algorithm that has a poor convergence rate may score a high 

generalization performance when it’s applied to train a 

machine learning problem.  
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Therefore machine learning presents new challenges to 

mathematical optimization. It is still an open question on what 

are the desirable properties of an optimization algorithm from 

the machine learning perspective. In this paper, we study 

boosting [8, 7], a machine learning method that is famous for 

its resistance to over-fitting. For example, the winners of the 

HiggsML Challenge on Kaggle, develop and use the Boosting 

library, XGBoost [5], to win this competition. We formulate 

boosting as an optimization problem on the exponential loss 

and show its equivalency to gradient descent. We introduce a 

novel variant of boosting algorithm, based on a new 

optimization algorithm called the dual averaging methods that 

minimizes the same exponential loss function. We examine 

the performance of the standard boosting algorithm and ours, 

from both an optimization perspective and a machine learning 

perspective. Boosting is a general method to derive strong 

learner from weak learning algorithms. The boosting method 

is based on the observation that finding base (weak) learners 

that performs just slightly better than random guessing can be 

a lot easier than finding a single, highly accurate one. Levin 

et.al. [15] first postulated the conjecture of whether a 

combination of base learners can be boosted into an arbitrary 

accurate strong learner in the framework of PAC(probably 

approximately correct) learning model. Freund et.al. [6] 

introduced the first practical boosting algorithm in binary 

classification, called AdaBoost, which repeatedly calls a base 

learning algorithm to train different classifiers that fits the 

re-sampled training examples from a different distribution. At 

each round the AdaBoost algorithm assigns larger weights on 

the harder examples, this effectively forces the base learning 

algorithm to focus its attention on the examples that were 

misclassified by the preceding classifier, and to come up with 

a new classifier that is hopefully more accurate. AdaBoost 

then combines those weak classifiers by simply taking a 

weighted majority vote of their predictions. AdaBoost is 

shown to give significant accuracy improvements over base 

learning algorithms. Looking to extend upon the success of 

AdaBoost, many attempts have been successfully at providing 

general algorithms for boosting. Breiman [4] and Mason et.al. 

[18] made the crucial links between AdaBoost and 

optimization by reformulating AdaBoost from a gradient 

descent point of view on an exponential loss function. This 

intuitive connection was further developed and many variants 

of AdaBoost were seen as performing gradient descent, but 

with different loss functions and different gradient descent 

methods. Furthermore, as pointed out by [9] in their recent 

work, the existing gradient- based boosting algorithm can fail 

to converge on some non-smooth convex objectives.  
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To address this issue, they presented new algorithms that can 

be extended to arbitrary convex loss functions with 

convergence guarantee. How- ever, one limitation of these 

existing algorithms is that they computed new classifier based 

only on the sub-gradient of loss function at previous iteration. 

It was known that [24] this kind gradient descent method lacks 

the capability in exploiting the feasible set, especially when 

the loss function has additional regularization term such as l1 

norm for promoting sparsity. In this project, we would like to 

apply gradient descent method that involves the running 

average of all past sub-gradients of loss function (known as 

dual averaging method [20, 1]), to the boosting framework. In 

addition, we would like to study the convergence results of the 

proposed algorithm. Finally, we will demonstrate 

experimental results that support our analysis and examples 

that show the need for the new algorithm based on 

dual-averaging scheme. The remainder of this paper is 

organized in the following way. Section 2 first describe the 

Adaboost algorithm and formulated it as a gradient descent on 

the exponential loss. In section 3 we introduce the dual 

averaging method and show how to implement it in the 

boosting setting. We compare the performance results of both 

boosting algorithms in section 4. We conclude with 

discussions in section 5. 

II. RELATED WORK: ADABOOST 

A. Algorithm description 

The AdaBoost algorithm (shown in Algorithm 1) is arguably 

one of the most crucial developments in machine learning in 

the past two decades. AdaBoost can train classifiers with 

extreme small generalization errors from base learners as 

weak as decision stumps or as strong as neural networks. Let 

{(xi, yi)}i=1,...,n be the training set where  

 
the training instance xi ∈  X and the training label yi ∈  {−1, 
1}.  

AdaBoost calls a given weak or base learning algorithm 

repeatedly in a series of rounds t = 1, . . . , T . Adaboost 

maintain a distribution Dt over the training set, where Dt(i) 

represents the weight of this distribution on training example i 

on round t.  Initially the distribution is uniform and all weights 

are set equally. But on each round, AdaBoost increase the 

weights of incorrectly classified examples by the previous 

classifier and decrease the weights of correctly classified 

ones. In this way, the weak learning algorithm is forced to 

focus on the hard examples in the training set. The job of the 

weak learner is to find a classifier ht that minimized the 

training error Et with respect to distribution Dt: 

 
In practice, the weak learner may be an algorithm that can 

make use of the weights Dt on the training examples, or a 

subset of the training examples that are re-sampled according 

to Dt.  Once the weak classifier has been trained, AdaBoost 

chooses a parameter ηt /2 log(1 − εt )/εt measures the 

importance that is assigned to ht.  Note that ηt   ≥ 0 if Et ≤ 

1/2, and the smaller Et  gets the larger ηt becomes. The final 

classifier fT  is a weighted majority vote of T weak classifiers 

where ηt is the weight assigned to ht. 

B. A gradient descent View 

Here we describe the general boosting algorithm as gradient 

descent in function space.  We consider the function f : X → 

{−1, 1} in the function space L2(X , µ) whose Lebesgue 

integral is finite. The domain X is measurable and µ is a 

probability measure P with empirical probability 

distribution estimated from training instances {xi}i=1,...n. 

The inner product in this Hilbert space can be written as:              

 

 

This definition of f represents a great variety of machine 

learning algorithms ranged from multi-layer perceptron to 

decision tree. Under the framework of empirical risk 

minimization, we would like to employ the gradient descent 

algorithm to minimize the empirical risk of f, which is a 

functional Remp : L
2
 → R: 

 

 

where l is the loss function that measures the difference 

between the prediction f (xn ) and true label yn . The gradient 

of Remp with respect to a function f is another function g that 

makes Remp[f + ηg] change the most rapidly: 

 

 

 

where 1x is the indicator function of x. In contrast to the 

standard gradient descent algorithm, boosting restrict a set of 

allowable descent directions called the feasible set H, which 

correspond directly to the set of hypotheses generated by the 

base learner. H can be a set of all possible decision trees 

generated by C4.5 algorithm, or a set of all possible support 

vector machines. Given H, we would like to find a hypothesis 

h
⋆ 

that is the closest to the computed negative gradient. h
⋆ 

can then be found by projecting the negative gradient onto H. 

 

Finally the gradient descent algorithm will chose a step size ηt 
such that the empirical risk at the updated function Remp[f + 

ηt h
⋆

] is minimized. 
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For Adaboost, it can be shown that Remp[f] = 
i

å exp( − f(xi) 

yi ). We have 

 

where δx,xi = 1 if x = xi, otherwise δx,xi = 0. Finding the 

closet hypothesis h
⋆ 

from H is equivalent to maximizing 

 

This projection step is equivalent to finding a base hypothesis 

with smallest misclassification error εt over a boosted training 

set with distribution Dt. Finally, we choose the step size ηt 
such that 

 

   

 

 

 

 

Therefore, with exponential loss function, the gradient 

projection algorithm 2 is equivalent to the AdaBoost 

algorithm 1. By viewing AdaBoost as a gradient descent in the 

functional space, it’s tempting to conclude that AdaBoost a 

just an algorithm for minimizing exponential loss and more 

(less) powerful optimization techniques for the same loss 

should work even better (worse). In the next sections, we are 

going to test this conclusion by introducing a new variant of 

boosting algorithms that implements a different optimization 

technique. 

III.  BOOSTING WITH DUAL AVERAGE METHOD 

Dual averaging method (shown in algorithm 3) has recently 

been introduced in convex optimization by [20]. In the paper 

of [1], they proposed an alternative viewpoint of the Hedge 

algorithm using dual averaging method.  The hedge algorithm 

has been known for its close relation to the AdaBoost 

algorithm. However, the hedge algorithm and the AdaBoost 

algorithm differ in many different ways. First, in hedge 

algorithm (see [1] for more details), the weight Dt (i) 

increases if ith strategy is a “good” action at round t, while 

in AdaBoost the weight Dt (i) increases if the t hypothesis 

suggests a “bad” prediction on the ith example. The loss in 

hedge algorithm that measures the success of the strategy is a 

actually a measurement of hardness of an example in 

AdaBoost. Thus, the algorithm that minimizes the loss in 

Hedge algorithm will not minimized the training error Et in 

AdaBoost. Secondly yet more importantly, in AdaBoost the 

updating rule for the weights is Dt+1(i) ∝  Dt(i) 

exp(−ηt)yih(xi) with a time-varying parameter exp(−ηt) 

that changes at each iteration according to training error 

Et. But in hedge algorithm, this parameter is fixed ahead 

of time.1 Therefore, the algorithm described in [1] can not 

directly applied to a boosting algorithm. Instead, we need to 

design a novel dual averaging algorithm that is based on 

boosting setting. 

 
To correctly apply the dual averaging method in the boosting 

setting, we need to define the dual variable st = 
k=1

t

å λkgk in 

the functional space: 

 

 

Because the hypothesis class H applies to arbitrary weak 

learner. It’s not clear how to define a regularization function of 

rule-based learner (like zero-R) and tree-based learner (such 

as decision stumps and CART). We let R(h) = 0, then find a 

weak classifier h* can be written as: 
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Equation 13 defines a way to update the distribution Dt in dual 

averaging setting. And we choose the time step ηt as in 

equation 9, ηt = 0.5 log((1 − εt)/εt). Finally we introduce a 

novel boosting algorithm, called DABoost (shown in 

algorithm 4), based on dual averaging method. Based on 

algorithm 4, we implement the DABoost algorithm in the 

WEKA environment so that our DABoost al- gorithm can call 

basically any existing machine learning algorithms as the 

base learner. We fix the time-dependent importance 

parameter λt = 1 be constant in the implementation. 

IV. RESULTS 

 
(a) 

 
(b) 

Figure 1: This figure shows the Training and test errors 

of AdaBoost and DABoost, both using stumps as base 

learner, on data sets (a)Heart Disease, (b)Inonospear 

DABoost tends to produce classifiers wit higher bias but 

less variance. 

In this section, we evaluate our DABoost algorithm using 

different data sets in UCI machine learning repository [17], 

and compare our training error and test error to those of 

AdaBoost. Because the training part of both AdaBoost and 

DABoost can be viewed as convex optimization on the 

exponential loss, the training error represents the objective 

gap of the loss function, a measurement of quality from the 

optimization perspective, while the test error represent the 

generalization performance that is a measurement of quality 

from the machine learning perspective. We start with a toy 

example where the instance x is drawn uniformly from [−1, 

1]100, and the label y is the majority vote of three 

coordinates. The size of the training set n = 1, 000. We use 

this data set to test the correctness of our DABoost algorithm. 

With this simple data set, both DABoost and AdaBoost 

(boosting stumps) achieve 0% training error after three 

iterations, as expected. In comparison, popular machine 

learning algorithms such as SVM, logistic regression and 

multilayer perceptron only score test errors greater than 15% 

(note that tree-based algorithms such as CART and C4.5 can 

also score 0% test error). Figure 1(a) shows the performance 

of AdaBoost and DABoost, both using stumps as base learner, 

in Heart Disease data set. The blue curves represent the results 

from Adaboost while the green curves represent the results 

from DABoost. Training errors are shown in dashed lines 

while test errors are shown in solid lines. The heart disease 

data set contains 14 attributes. The label refers to the presents 

of heart disease in the patient. The heart disease data set is 

one of few training sets on which the AdaBoost algorithm 

overfits. As shown in the figure, DABoost converges slowly in 

terms of training error but suffers less over-fitting in terms of 

test error. Figure 1(b) shows the performance of AdaBoost 

and DABoost, both boosting decision stumps, in ionosphere 

data set The ionosphere data set contains 34 continuous 

attributes. The label is either “good” or “bad” where “good” 

radar returns are those showing evidence of some type of 

structure in the ionosphere and “bad” returns are those that do 

not. The ionosphere data set is commonly used in the machine 

learning literature. As shown in the figure, DABoost again 

converges slower than Adaboost in terms of training error but 

achieves better test error. In general, DABoost gets higher 

training error but enjoys lower test error. Similar behavior 

have been observed in many other data sets such as the letter 

data set by boosting a C4.5 base learner, and in the diabetes 

data set by boosting stumps. This is due to the bias-variance 

trade-off. DABoost update the distribution Dt based on the 

average of loss over all previous iterations. The resulting 

classifier becomes less flexible because as the number of 

iterations t increases, the distribution Dt changes slowly due 

to the update rule in equation 15. Thus, DABoost tends to 

produce classifiers wit higher bias but less variance. However, 

DABoost doesn’t always have better generalization 

performance than Adaboost. Figure 4 shows the performance 

of AdaBoost and DABoost, whose base learner is decision 

stumps, in Webb Spam Corpus data set. Web spam is defined 

as Web pages that are created to manipulate search engines 

and deceive Web users. All positive examples were taken and 

the negative examples were created by randomly traversing 

the Internet starting at well known (e.g. news) web sites. In 

this data set, any continuous one byte is treated as a word and 

the world count is used as the feature value. Each instance is 

normalized to unit length.  
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The number of total features is 254. Due to memory 

constraints, only 1% of instances (3, 500 instances) are used 

for training. As shown in the figure, DABoost converges 

slower than AdaBoost in terms of training error but also 

suffers larger test error. The reason for such poorer 

performance is due to the noise in the highly biased labels in 

the data set. 

Figure 2:This figure shows the Training and test errors of 

AdaBoost and DABoost, both using stumps as base 

learner, on the data set Web spam. 

V. CONCLUSION 

In this paper, we discuss the quality of a good optimization 

algorithm from both a machine learning perspective and a 

mathematical programming perspective. We postulated that a 

slower convergent optimization algorithm might result in a 

better machine learning algorithm with better generalization 

performance. We test this postulation by introducing a new 

variant of boosting algorithm, DABoost, based on dual 

averaging gradient descent method on exponential loss. Our 

simulation results show although slower in obtaining small 

training error, DABoost in general enjoys better 

generalization error than AdaBoost. Our implementation of 

DABoost is still far from complete and demands a series of 

future research. We fix the time- dependent importance 

parameter λt = 1 be constant in the implementation. A 

time-varying λt might lead to different results. Moreover, we 

simplifies the dual averaging algorithm by restraining the 

regularization function d(h) = 0. l1 or l2 regularization might 

be applied to base learners that can be parametrized by a 

vector of real numbers. DABoost is based on dual averaging 

algorithm, the recently introduced convex optimization 

algorithm that has similar linear convergence rate as the 

gradient descent. In our further work, more powerful 

optimization techniques such as accelerated gradient descent 

with quadratic convergence rate might be implemented in the 

boosting framework. 
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