
International Journal of Innovative Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-5 Issue-1, November 2017

17

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Pvt. Ltd.

Abstract: sorting of elements is an important task in

computation that is used frequently in different processes. For

accomplish task in reasonable amount of time efficient

algorithm is needed. Different types of sorting algorithms have

been devised for the purpose. Which is the best suited sorting

algorithm can only be decided by comparing the available

algorithms in different aspects. In this paper a comparison is

made for different sorting algorithms used in computation..

Index Terms: Best Sorting Algorithm, Bubble Sort

Algorithms, Quick Sort Algorithms, Sorting Algorithms,

Efficient Sorting.

I. INTRODUCTION

 Sorting is sequence of data that is an important pillar in

computer science. In sorting process data is organized in an

order. Different algorithms are used for this purpose. Sorting

is of two types one is internal sorting and second is external

sorting. Internal sorting is performed when small amount of

data that can be hold in the memory is sorted. For sorting the

large amount of data, a part of whose exists in some external

storage device during sorting process another type of sorting

called external sorting is used. The most used sorting orders

are numerical and lexicographical orders. In this paper an

overview of both internal and external sorting algorithms is

discussed.

II. EXTERNAL SORTING ALGORITHUMS

External sorting algorithms handle the massive data in

sorting process successfully. It is not possible to store all data

into the main memory of computer and a part of data must

reside on some external storage device. The strategy used for

such sorting is hybrid sort-merge. In this strategy small

portions of data are read from external storage device

according to the main memory size, sorted and saved in

temporary file and at last these all sorted files are merged

together for making a single file containing sorted data.

Following sorting algorithms are mostly used for external

sorting.

Revised Version Manuscript Received on December 11, 2017.

Muhammad Shahzad, School of Electrical and Electronics Engineering,

North China Electric Power University, Changping District, Beijing, China

E-mail: shahzadpansota@hotmail.com

Muhammad Shakeel, Department of Electrical Engineering, The

University of Lahore- Islamabad Campus, Islamabad, Pakistan, E-mail:

engnr.shakeel@gamil.com

Um-e-Kalsoom, Department of Computer Science, Virtual University,

Islamabad, Pakistan, E-mail: innocentmishi786@gmail.com

Atiq Ur Rehman, School of Electrical and Electronics Engineering, North

China Electric Power University, Changping District, Beijing, China. E-mail:

atiq_marwat@yahoo.com

M Umair Shoukat, Department of Electrical Engineering, Government

College University Faisalabad Sahiwal Campus, Pakistan, E-mail:

umairshoukat@yahoo.com

A. External Merge Sort

External merge sort is used to sort huge amount of data. It

uses chunks of data according to the size of main memory.

When every chunk is sorted successfully it merges these

chunks into a large file that is now fully sorted. It usually

includes two pass sort, firstly a sort pass and afterwards a

merge pass. In regular merge sort there are total log n merge

passes but in external merge sort it is avoided for the reason

that in every merge pass every data value has to be read from

and write on the disk and in case of external merge sort data

resides on an external storage device that are very slow rather

than main memory.

Figure 1 : I/O and Data Storage Overview

Sorting large amount of data while having limited main

memory requires more than one passes because with small

memory and large amount of data a single merge pass cannot

produce efficient results. Performing efficient external sort

needs O(n log n) time. Every exponential increase in data

amount causes linear increase in time used for sorting. If

memory is increased then a single merge pass can be efficient.

In other words increase in memory decreases the number of

passes in sorting process.

The second method to perform external sort efficiently is

the use of parallelism. In this method multiple disk drives are

used and multiple sorting threads run at the same time

increasing the speed of sorting process. Several machines are

linked in a speedy network to perform sorting on huge data

sets in parallel.

Another technique for enhancing the speed of sorting

process is increasing the hardware speed. Use of a large

RAM reduces the number of disk seeks and reduces the

number of passes. Faster external storage devices such as

solid state drives also reduce the number of passes during

sorting process. Additional issues that can affect the sorting

speed are the CPU performance, number of cores, RAM

access latency, disk speed, seek time and I/O bandwidth. In

this regard cost efficiency and absolute speed can be critical

specifically in cluster environment.

Review on Sorting Algorithms - A Comparative

Study

Muhammad Shahzad, Muhammad Shakeel, Um-A-Kalsoom, Atiq Ur Rehman, M Umair Shoukat

mailto:shahzadpansota@hotmail.com
mailto:engnr.shakeel@gamil.com
mailto:innocentmishi786@gmail.com
mailto:atiq_marwat@yahoo.com
mailto:umairshoukat@yahoo.com

Review on Sorting Algorithms - A Comparative Study

18

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Pvt. Ltd.

Use of efficient and faster software for sorting also

enhances the efficiency of the sorting process.

B. Distribution Sort

The other major category of external sort is distribution

sort. It has further types that fit for different types of data and

situations. These include bucket sort, linear probing sort,

shuffle sort, merge sort, radix sort, strand sort, distributive

partitioning sort etc.

Figure 2 : Distribution Sorting Method

The main technique which is used in distribution sort is

the division of data into small chunks using some

intermediary structure and then combines app portions in

one large output file. Any algorithm that requires sorting of

data using comparison of keys at least requisites O(n log n)

time for sorting.

III. INTERNAL SORTING ALGORITHMS

When we have small amount of data that can be fit into the

available memory the internal sorting algorithms are the best

suited algorithms. These are efficient and quicker option

because memory or RAM is faster than any secondary storage

device. These are the more efficient in sense that their

working is swift and less time consuming. Efficient

algorithms are mostly based on average complexity O(n log

n). The common types of efficient sorts are merge sort, heap

sort and quick sort. Here under is a review of efficient

internal algorithms.

A. Merge Sort

The merge sort algorithms use the sorted lists and merge

them. In this process it uses swapping of data elements if it is

necessary. It continues the process till the production of final

sorted list. It can be easily applied to lists and arrays because

it needs sequential access rather than random access. It can

handle very large lists due to its worst case running time O(n

log n). The O (n) additional space complexity and

involvement of huge amount of copies in simple

implementation made it a little inefficient.

Merge sort is very popular in practical implementations

because of its use and popularity in sophisticated algorithm

Timsort. It is used in Python and JAVA programming

languages. It is divide and conquer type of algorithm.

Initially it divides the supplied data set into sub-lists

consisting of only one element as these lists are sorted ones.

Then it starts comparing and merging the elements of this

sorted list until a single list is left behind. This list will be

ordered list of provided data.

 The processing method of merge sort can be elaborated

through the following image:

Figure 3 : Merge Sorting Method

B. Heap Sort

The most efficient version of selection sort is heap sort. It

firstly determines the largest or the smallest element of the

list and places it at the beginning in case of largest and at the

end in case of the smallest element. It continues the process

for the remaining list and completes the task very efficiently

and quickly. For performing the process of sorting it uses a

special data structure called heap. Heap is particular type of

binary tree. This algorithm makes the heap from given data

that is going to be sorted. Once the heap is constructed it

ensures that root node is the largest (or smallest in case of

opposite sorting order) element of given data.

To create the ordered list the root node is removed and

placed at the beginning of list or end of list according to

sorting order. When root node is removed the next largest or

smallest node moves to the root node and heap is rearranged.

By continuing this process a sorted data list is gained.

Figure 4 : Heap Sorting Method

International Journal of Innovative Science and Modern Engineering (IJISME)

ISSN: 2319-6386, Volume-5 Issue-1, November 2017

19

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Pvt. Ltd.

Using the heap structure requires O(log n) time for

searching the next largest or smallest data element rather

than O(n) for a linear scan in simple selection sort. This lets

the heap sort execution in O(n log n) time which is the worst

case time complexity.

C. Quick Sort

Quick sort also belongs to the divide and conquer category

of algorithms. It depends on the partitions operation. For

performing the partition operation on an array it selects an

element of array that divides the array in to two parts. This

element is called the pivot. Considering this element the

centre point all elements that are smaller than pivot are

arranged on one side and the larger elements on the other

side of the pivot. In the next step the lesser and greater lists

are sorted repeatedly.

Figure 5 : Quick Sorting Algorithm

This is done in the average time complexity of O(n log n)

with low overhead that makes it the widespread in sorting

processes and it is the part of many programming libraries.

The important thing that must be kept in consideration is

time cost of its worst case performance that is O(n2) although

it is infrequent and happened only in working with sorted

data and the smallest or the largest element is chosen as pivot.

The key issue in using the quick sort is the selection of pivot

element because poor selections can extremely slower the

O(n2) performance. On the other hand selection of good pivot

element acquires the O(n log n) performance that is the

optimal solution. To yield O (n log n) performance it is the

good practice to select the median as pivot element in each

step.

D. Simple Sorts

The most popular simple sorts are insertion and selection

sorts that efficient for small amount of data because these

have low overhead. If we compare the both algorithms

insertion sort is more efficient than the selection sort. It has

fewer comparisons and efficient performance on almost

sorted data. On contrary selection sort is good choice when

write performance is limiting factor because selection sort

requires fewer writes. Insertion sort is good choice for small

and almost sorted list. It picks the elements from the input list

one by one and places them into a new output list at their

correct positions. Insertion is costly process as it needs

moving all subsequent elements over one insertion. There are

variants for algorithms that provide efficient working and for

insertion sort, shell sort is a variant that is more efficient than

insertion sort.

Figure 6 : Simple Sorting Algorithm

Selection sort is inefficient due to its O(n2)complexity for

large lists and has a worse performance rather than an equal

insertion sort. Selection sort is efficient where swapping is

required as it selects the minimum value and swaps it with

the first value in the list. Repeating of the process generates

the sorted list in n number of swaps. This quality makes

selection sort the most suited algorithm where swapping is

expensive.

Figure 7 : Simple Sorting Method

E. Bubble Sort

The bubble sort is good as an internal sorting algorithm

because it sorts the list of items by comparing the two

adjacent items and swapping them if they are not found in

order. It performs well if all the data is fitted in the memory

as a single chunk of data. Bubble sort has O(n) as the best

case performance and O(n2) as the worst case performance

and average case performance.

Review on Sorting Algorithms - A Comparative Study

20

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Pvt. Ltd.

Bubble sort has to perform a large number comparison

when there are more elements in the list and it increases as

the number of items increase that are needed to be sorted.

Although bubble sort is quite simple and easy to implement

but it is inefficient in coding reference.

Bubble sort simply selects one item from the list and compare

it with the adjacent items and put them in order. In this

sequence the number of comparisons increases remarkably.

Here is a simple elaboration of the bubble sort.

IV. COMPARISON CRITERIA

Efficient sorting algorithms may vary in performance under

different factors. So these can be compared or judged on the

basis of these factors.

The first point that is considered for judgment is the best case,

average case and the worst case performance of the algorithm.

With this reference quick sort is exceptionally good in its best

case for some input and dreadful for other inputs in its worst

case. At the same criterion we observe that other algorithms

for instance merge sort are not disturbed or altered in

performance by the order of input.

The “constant term” is the other factor that is considered

while evaluating the algorithms. The value of constant c will

vary for different algorithms. The big-O notations are quite

useful for avoiding many process details and present a big

scenario. Contrary to the theory, a well applied quick sort

must have a much smaller constant multiplier than a heap

sort.

The space requisite for an algorithm is also a criterion for the

evaluation of an algorithm. In this regard the space required

to run an algorithm is considered whether it needs extra

space for different data sets or not. Some algorithms under no

circumstances require extra pace but some needs extra space

for performing well.

Stability of an algorithm is also a valid factor for choosing the

best algorithm. Stability is the quality if algorithm for

keeping the sequence with identical values. Most of the sorts

manage it well but for the heap sort it is not possible.

In the following table a comparison of different algorithms

according to the above stated criteria. The tabular form of

comparison will display a gross view of all the algorithms.

Table 1 : Comparison of Sorting Algorithms

Sort
Time Space Stability

Avg Best Worst

Bubble

sort
O(n^2) O(n^2) O(n^2) Constant Stable

Selection

sort
O(n^2) O(n^2) O(n^2) Constant Stable

Insertion

sort
O(n^2) O(n) O(n^2) Constant Stable

Merge

sort
O(n* log n)

O(n* log

n)

O(n*

log n)
Depends Stable

Quick

sort
O(n* log n)

O(n* log

n)
O(n^2) Constant Stable

The following points are also important while choosing a

suitable algorithm

 Selection and bubble sort algorithms perform

comparisons of items to move them to their final

position. So they start with one item outing to the

final position and continue sorting for the rest of

item unless all the items acquire their final and

suitable position.

 On the other hand insertion and quick sort place the

sorted items in a temporary position that is nearer to

final position. This job is performed iteratively till

the whole list is sorted.

 Merging technique is used in merge sort. It chooses

the sorted list of one item and merge the unsorted

items to it one by one to create a sorted list.

 Time and space complexity of algorithm is also

important and has deep effect on the performance.

 O(n) time is the least time that is needed for sorting a

list of N items. It is only possible when we assume

about data and do not require comparison of it’s

against each other iteratively. Each element passes

through a comparison at least once.

V. CONCLUSION

In this study different algorithms are observed against

multiple factors. It reveals that each of the considered

algorithms has advantages and disadvantages and the

programmer has to be vigilant about his / her requirement of

sorting algorithms. A comparison of algorithm in this paper

is showing the performance of sorting algorithms along with

their differences to each other.

ACKNOWLEDGMENT

We would like to state hereby my thanks to Almighty Allah

who helped us a lot and enable us for writing this paper. We

would like to pay our gratitude to our parents.

REFERENCES

1. Chudy, M. (2010). Simulation Needs Efficient Algorithms. In Modeling

Simulation and Optimization-Focus on Applications. InTech.

2. Atallah, M. J. (1985). Some dynamic computational geometry problems.

Computers & Mathematics with Applications, 11(12), 1171-1181.

3. Paira, S., Agarwal, A., Alam, S. S., & Chandra, S. (2015). Doubly

Inserted Sort: A Partially Insertion Based Dual Scanned Sorting

Algorithm. In Emerging Research in Computing, Information,

Communication and Applications (pp. 11-19). Springer, New Delhi.

4. Groppe, S. (2011). External Sorting and B+-Trees. In Data Management

and Query Processing in Semantic Web Databases (pp. 35-65). Springer

Berlin Heidelberg.

5. Paira, S., Chandra, S., Alam, S. S., & Dey, P. S. A Review Report on

Divide and Conquer Sorting Algorithm. In National Conference on

Electrical, Electronics, and Computer Engineering, ISBN (pp. 978-93).

6. Paira, S., Chandra, S., Alam, S. S., & Patra, S. S. (2014). Max min sorting

algorithm—a new approach of sorting. Int. J. Technol. Explor.

Learn.(IJTEL), 3(2), 405-408.

7. Adamson, I. T. (2012). Data structures and algorithms: a first course.

Springer Science & Business Media.

8. SurenderLakra, D. (2013). Improving the performance of selection sort

using a modified double-ended selection sorting. International Journal of

Application or Innovation in Engineering & Management (IJAIEM),

Web Site: www. ijaiem. org Email: editor@ ijaiem. org, editorijaiem@

gmail. com, 2(5).

9. Sodhi, T. S., Kaur, S., & Kaur, S. (2013). Enhanced insertion sort

algorithm. International journal of Computer applications, 64(21).

